化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5806-5815.DOI: 10.11949/0438-1157.20250472

• 专栏:能源利用过程中的多相流与传热 • 上一篇    下一篇

水平管内分段式多孔镀层R245fa沸腾换热特性

曹泷1,2(), 刘贺1, 郭家驹1, 张义1, 刘文裴1, 吴学红1,2()   

  1. 1.郑州轻工业大学能源与动力工程学院,河南 郑州 450002
    2.河南省能源高效转化与利用国际联合实验室,河南 郑州 450002
  • 收稿日期:2025-04-30 修回日期:2025-09-19 出版日期:2025-11-25 发布日期:2025-12-19
  • 通讯作者: 吴学红
  • 作者简介:曹泷(1989—),男,博士,副教授,caos@zzuli.edu.cn
  • 基金资助:
    国家自然科学基金项目(51906231);中原科技创新青年拔尖人才计划项目;河南省中原科技创新领军人才项目(234200510011);河南省重点研发计划项目(241111320900);河南省重点研发与推广专项(242102321098);河南省科协青年托举人才工程项目(2024HYTP022);郑州轻工业大学青年骨干教师资助计划项目(13502010008)

R245fa flow boiling heat transfer characteristics in horizontal tube with segmented porous coating

Shuang CAO1,2(), He LIU1, Jiaju GUO1, Yi ZHANG1, Wenpei LIU1, Xuehong WU1,2()   

  1. 1.College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
    2.Henan International Joint Laboratory of Energy Efficient Conversion and Utilization, Zhengzhou 450002, Henan, China
  • Received:2025-04-30 Revised:2025-09-19 Online:2025-11-25 Published:2025-12-19
  • Contact: Xuehong WU

摘要:

采用烧结与电镀耦合处理工艺,在不锈钢换热管内壁面制备一层在流向上呈分段式微-纳多孔镀层结构,入口处孔径较大,中间次之,出口处最小。以R245fa为工质进行水平管内流动沸腾换热实验。实验工况为:饱和压力0.6 MPa,质量流速200~700 kg/(m2·s),热通量5~75 kW/m2,实验段入口干度0.01~0.9。实验结果表明:实验管对流动沸腾换热有明显的强化效果,传热系数相较光滑管最大可达2.71倍。入口处较大的孔隙结构不仅具有较低的流动阻力,同时还能够有效地调控流动模式。出口处较小的孔隙结构可以更轻松捕获小液滴,促进小液滴吸附到换热表面,进而对换热面进行液体补给,减缓壁面干涸的形成。流型可视化分析表明实验中出现了三种流型,分别为分层流、环状流和干涸。

关键词: 两相流, 换热, 微尺度, 润湿性, 流动沸腾

Abstract:

A segmented micro-nano porous coating structure was fabricated on the inner wall surface of a stainless-steel heat transfer tube by a combined sintering and electroplating process. Flow boiling heat transfer experiments with R245fa as the working fluid were conducted in a horizontal tube. The experimental conditions were: saturation pressure of 0.6 MPa, mass flux ranging from 200 to 700 kg/(m²·s), heat flux ranging from 5 to 75 kW/m², and inlet vapor quality between 0.01 and 0.9. Experimental results indicate that constructing porous structures with different pore sizes along the tube flow direction can effectively enhance boiling heat transfer by adapting to flow pattern transitions. The enhanced tube exhibited a significant improvement in flow boiling heat transfer performance, with a maximum enhancement of up to 2.71 times compared to a smooth tube. The smaller pore structure at the outlet facilitates the capture of micro-droplets, enhancing their adsorption onto the heat exchange surface. This mechanism ensures efficient liquid replenishment, thereby mitigating the formation of wall dry-out. Flow visualization revealed the presence of three flow patterns during the experiments: stratified flow, annular flow, and dryout.

Key words: two-phase flow, heat transfer, microscale, wettability, flow boiling

中图分类号: