化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5604-5616.DOI: 10.11949/0438-1157.20250482

• 专栏:能源利用过程中的多相流与传热 • 上一篇    下一篇

Mn/Ce共掺杂强化氧物种转化与稀薄甲烷催化燃烧机制研究

邱家齐1,2(), 杨仲卿1,2(), 张志刚3, 甘海龙3, 霍春秀3, 窦志帅1,2, 冉景煜1,2   

  1. 1.低品位能源利用技术及系统教育部重点实验室(重庆大学),重庆 400044
    2.重庆大学能源与动力工程学院,重庆 400044
    3.中煤科工集团重庆研究院有限公司,重庆 400039
  • 收稿日期:2025-05-06 修回日期:2025-07-10 出版日期:2025-11-25 发布日期:2025-12-19
  • 通讯作者: 杨仲卿
  • 作者简介:邱家齐(1998—),男,博士研究生,qjq@cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52276099);中煤科工集团科技计划项目(2024-TD-ZD020);中煤科工集团重庆研究院有限公司自立项目(2024ZDYF19)

Mechanistic study of Mn/Ce co-doping for enhanced oxygen species conversion and catalytic combustion of dilute methane

Jiaqi QIU1,2(), Zhongqing YANG1,2(), Zhigang ZHANG3, Hailong GAN3, Chunxiu HUO3, Zhishuai DOU1,2, Jingyu RAN1,2   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
    2.School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
    3.China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400039, China
  • Received:2025-05-06 Revised:2025-07-10 Online:2025-11-25 Published:2025-12-19
  • Contact: Zhongqing YANG

摘要:

合成了一系列具有不同Mn/Ce掺杂比例的Cu基整体式催化剂,并使用其进行了稀薄甲烷催化燃烧活性测试。其中,4Cu-3Mn-1Ce催化剂展现出最佳的甲烷催化活性,在550℃下转化率达85.0%,并且在600℃下实现了完全转化。利用包括原位红外光谱(in situ FTIR)在内的一系列表征分析与密度泛函理论(DFT)模拟计算探究了Mn/Ce掺杂对Cu基整体式催化剂理化性质的作用机制,Mn/Ce掺杂强化Cu基整体式催化剂稀薄甲烷催化燃烧活性可以归因为:Ce掺杂构建Ce-Cu固溶体,弱化Cu—O键合,促进高温下晶格氧的扩散,从而强化高温催化活性;Mn掺杂促进催化剂对O2的吸附,强化低温下甲烷的催化活性;Mn/Ce共掺杂强化O2活化并解离为*O,*O填补进入氧空位再生为晶格氧,共掺杂强化了氧物种循环,从而显著提高稀薄甲烷催化燃烧活性。

关键词: 催化, 甲烷, 活化, 燃烧, 掺杂

Abstract:

In this study, a series of Cu-based monolithic catalysts with different Mn/Ce doping ratios were synthesized and used for catalytic combustion activity testing of dilute methane. Among them, the 4Cu-3Mn-1Ce catalyst exhibited the best methane catalytic activity with a conversion of 85.0% at 550℃ and achieved complete conversion at 600℃. The mechanism of the effect of Mn/Ce doping on the physicochemical properties of Cu-based monolithic catalysts was investigated by characterization analysis, including in situ Fourier Transform infrared spectroscopy (in situ FTIR), and density functional theory (DFT) simulation calculations. The enhanced methane catalytic combustion activity of the Cu-based monolithic catalysts can be attributed to the following: Ce doping forming a Ce-Cu solid solution, weakening the Cu—O bond, and promoting lattice oxygen diffusion at high temperatures, thus enhancing high-temperature catalytic activity; and Mn doping promotes the adsorption of O2 on the catalysts, which strengthens methane oxidation at low temperatures; Mn/Ce co-doping strengthens the activation of O2 and its dissociation to *O, which fills the oxygen vacancies and regenerates into lattice oxygen, the co-doping strengthens the cycle of oxygen species and thus significantly improves the catalytic combustion activity of thin and dilute methane.

Key words: catalysis, methane, activation, combustion, doping

中图分类号: