化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4800-4808.DOI: 10.11949/0438-1157.20250205
收稿日期:2025-03-03
修回日期:2025-04-12
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
甘云华
作者简介:刘卓龙(2001—),男,硕士研究生,1033295760@qq.com
基金资助:
Zhuolong LIU(
), Yunhua GAN(
), Keyang QU, Ningguang CHEN, Minghui PAN
Received:2025-03-03
Revised:2025-04-12
Online:2025-09-25
Published:2025-10-23
Contact:
Yunhua GAN
摘要:
研究电场对小尺度射流扩散燃烧特性的影响能够为高性能微动力装置设计提供指导。搭建了生物柴油小尺度射流扩散火焰实验台,探究了正向和反向均匀电场对火焰稳燃范围、稳燃火焰高度和宽度以及火焰爆炸频率的影响。使用可视化方法研究了电场对气液两相界面与毛细管口之间距离(以下简称界面距离)的影响。结果表明,当施加外部电场时,火焰的燃烧下限和燃烧上限会分别增大和减小,且反向电场的作用效果较正向电场更加显著。随着电压的增大,无论施加正向还是反向电场,火焰爆炸频率均减小,稳定燃烧时界面距离增大;随着正向电压增大,稳定火焰的高度和宽度分别增大和减小,最大变化幅度分别为10.18%和11.14%。反向电场时则相反,最大变化幅度分别为高度减小7.28%、宽度增大17.02%。
中图分类号:
刘卓龙, 甘云华, 屈可扬, 陈宁光, 潘铭晖. 均匀电场对生物柴油小尺度射流扩散燃烧特性影响研究[J]. 化工学报, 2025, 76(9): 4800-4808.
Zhuolong LIU, Yunhua GAN, Keyang QU, Ningguang CHEN, Minghui PAN. Research on the effect of uniform electric field on characteristics of biodiesel small-scale jet diffusion combustion[J]. CIESC Journal, 2025, 76(9): 4800-4808.
| 密度/(kg/m3) | 动力黏度/(mPa·s) | 表面张力/(N/m) | 电导率/(S/m) |
|---|---|---|---|
| 870 | 6.05 | 0.034 | 5.0×10-10 |
表1 25℃时生物柴油的理化性质
Table 1 Physicochemical properties of biodiesel at 25℃
| 密度/(kg/m3) | 动力黏度/(mPa·s) | 表面张力/(N/m) | 电导率/(S/m) |
|---|---|---|---|
| 870 | 6.05 | 0.034 | 5.0×10-10 |
| [1] | Sembiring K C, Saka S. Renewable hydrocarbon fuels from plant oils for diesel and gasoline[J]. Journal of the Japan Petroleum Institute, 2019, 62(4): 157-172. |
| [2] | 杨霄, 丁锐, 李墨含, 等. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437. |
| Yang X, Ding R, Li M H, et al. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel[J]. CIESC Journal, 2022, 73: 5427-5437. | |
| [3] | E J Q, Meng T, Chen J W, et al. Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure[J]. Energy, 2021, 230: 120727. |
| [4] | Dias D M, Resende P R, Afonso A M. A review on micro-combustion flame dynamics and micro-propulsion systems[J]. Energies, 2024, 17(6): 1327. |
| [5] | You J X, Wang D D, Yan Y F, et al. A novel two-stage thermophotovoltaic-thermoelectric system based on micro combustion[J]. Applied Thermal Engineering, 2023, 232: 121018. |
| [6] | Boretti A. Transitioning from low-emission dry micro-mix hydrogen-air combustion to zero-emission wet micro-mix hydrogen-oxygen combustion in hydrogen energy storage systems[J]. International Journal of Hydrogen Energy, 2024, 67: 1066-1073. |
| [7] | Ma L, Fang Q Y, Zhang C, et al. Influence of CH4/air injection location on non-premixed flame blow-off limits in a novel micro-combustor[J]. International Journal of Hydrogen Energy, 2022, 47(9): 6323-6333. |
| [8] | Tian X H, Peng Q G, Wang H, et al. Improvement of energy conversion of H2/CH4 fueled micro-thermophotovoltaic in a micro-planar inserted with bluff-body and porous media[J]. Applied Thermal Engineering, 2024, 236: 121908. |
| [9] | Zhang B, Liu Z G, Li W, et al. Characteristic visualization of the micro/mesoscale liquid ethanol diffusion flame by using deflection tomography[J]. International Communications in Heat and Mass Transfer, 2018, 96: 43-52. |
| [10] | Huang B Y, Zhang Y, Yang X Y, et al. Novel bubble shrinkage phenomenon in n-butanol/PODE4 binary droplet combustion[J]. Combustion and Flame, 2024, 259: 113125. |
| [11] | Han K, Lin Q Z, Liu M H, et al. Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/methanol blended droplets[J]. Renewable Energy, 2022, 196: 261-277. |
| [12] | Wang Z W, Wu S, Huang Y H, et al. Experimental investigation on spray, evaporation and combustion characteristics of ethanol-diesel, water-emulsified diesel and neat diesel fuels[J]. Fuel, 2018, 231: 438-448. |
| [13] | Meng K S, Miao W B, Wang C H, et al. Combustion and micro-explosion characteristics of biodiesel-ethanol-aluminum powder particles droplet under simulated air nitrogen-oxygen[J]. Physics of Fluids, 2023, 35(10): 102024. |
| [14] | Syed Masharuddin S M, Abdul Karim Z A, Meor Said M A, et al. The evolution of a single droplet water-in-palm oil derived biodiesel emulsion leading to micro-explosion[J]. Alexandria Engineering Journal, 2022, 61(1): 541-547. |
| [15] | Zhou F, Wang J G, Zhou X C, et al. Effect of 2,5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet[J]. Energy, 2021, 224: 120228. |
| [16] | 左磊, 王军锋, 高健, 等. 电场调控生物柴油液滴燃烧行为[J]. 化工学报, 2024, 75(8): 2983-2990. |
| Zuo L, Wang J F, Gao J, et al. Electric field-regulating combustion behavior of biodiesel droplet[J]. CIESC Journal, 2024, 75(8): 2983-2990. | |
| [17] | Bai Z Z, Jiang X Z, Luo K H. Reactive force field molecular dynamics simulation of pyridine combustion assisted by an electric field[J]. Fuel, 2023, 333: 126455. |
| [18] | Gao X Y, Gao Z Q, Du Z H, et al. Effect of low-frequency alternating-current electric field parameters on laminar and turbulent flames of CH4/air mixture[J]. Fuel, 2022, 317: 121755. |
| [19] | Zhang Y F, Li T, Wei X L. Influence of non-thermal plasma and electric field on non-premixed methane flame[J]. Thermal Science and Engineering Progress, 2024, 47: 102366. |
| [20] | Sayed-Kassem A, Gillon P, Idir M, et al. On the effect of a DC electric field on soot particles' emission of a laminar diffusion flame[J]. Combustion Science and Technology, 2022, 194(1): 213-224. |
| [21] | Gillon P, Gilard V, Idir M, et al. Electric field influence on the stability and the soot particles emission of a laminar diffusion flame[J]. Combustion science and technology, 2019, 191(2): 325-338. |
| [22] | Xia H, Wang J H, Ju R Y, et al. Effect of ionic wind induced by DC electric field on biogas/air turbulent premixed flame structure[J]. Combustion Science and Technology, 2023, 195(2): 294-312. |
| [23] | Arefyev K Y, Krikunova A I, Panov V A. Complex effect of electric and acoustic fields on air-methane flame blow-off characteristics[J]. High Temperature, 2019, 57(6): 909-915. |
| [24] | Zuo L, Wang J F, Mei D Q, et al. Electric field-influencing combustion behaviors of droplets of ethanol, biodiesel and diesel[J]. Fuel, 2024, 357: 129649. |
| [25] | Luo Y L, Jiang Z W, Gan Y H, et al. Evaporation and combustion characteristics of an ethanol fuel droplet in a DC electric field[J]. Journal of the Energy Institute, 2021, 98: 216-222. |
| [26] | 卫佳. 微能源系统内碳氢燃料燃烧特性及传热强化研究[D]. 贵阳: 贵州大学, 2023. |
| Wei J. Study on combustion characteristics and heat transfer enhancement of hydrocarbon fuel in micro-energy system[D]. Guiyang: Guizhou University, 2023. | |
| [27] | 赵亮. 平板型微通道内氢气/空气预混燃烧的数值模拟研究[D]. 武汉: 华中科技大学, 2019. |
| Zhao L. Numerical simulation study on hydrogen/air premixed combustion in flat microchannel[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
| [28] | 肖洪成, 李君, 李擎擎. 多孔介质微小燃烧器的传热特性分析[J]. 燃烧科学与技术, 2020, 26(4): 354-360. |
| Xiao H C, Li J, Li Q Q. Heat transfer characteristics of micro-combustors filled with porous media[J]. Journal of Combustion Science and Technology, 2020, 26(4): 354-360. | |
| [29] | 甘云华, 王美, 杨泽亮. 液体乙醇小尺度扩散火焰的稳燃极限[J]. 燃烧科学与技术, 2013, 19(6): 488-492. |
| Gan Y H, Wang M, Yang Z L. Stable combustion limit of small diffusion flame using liquid ethanol as fuel[J]. Journal of Combustion Science and Technology, 2013, 19(6): 488-492. | |
| [30] | Rashid M T, Li J W, Chen X J, et al. Numerical simulation of evaporation phenomena and heat transfer of liquid hydrocarbon in a microtube[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121734. |
| [31] | 王宇, 姚强. 电场对火焰形状及碳烟沉积特性的影响[J]. 工程热物理学报, 2007, 28(S2): 237-239. |
| Wang Y, Yao Q. Variation of flame shape and soot deposits by applying electric fields[J]. Journal of Engineering Thermophysics, 2007, 28(S2): 237-239. | |
| [32] | 李世琰. 过热液体燃料的闪沸雾化与蒸发机理研究[D]. 上海: 上海交通大学, 2017. |
| Li S Y. Investigation on flash atomization and evaporation mechanism of superheated liquid fuel[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
| [33] | Chen J, Peng X F, Yang Z L, et al. Characteristics of liquid ethanol diffusion flames from mini tube nozzles[J]. Combustion and Flame, 2009, 156(2): 460-466. |
| [1] | 李相海, 赖德林, 孔纲, 周健. 双仿生表面水下疏油协同机制的分子动力学模拟研究[J]. 化工学报, 2025, 76(9): 4551-4562. |
| [2] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [3] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [4] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [5] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [6] | 常心泉, 张克学, 王军, 夏国栋. 自由分子区内不规则颗粒的热泳力计算[J]. 化工学报, 2025, 76(8): 3944-3953. |
| [7] | 叶鑫煌, 薛嘉豪, 赵玉来. 可聚型Gemini表面活性剂的制备、表征及其稳定高内相乳液的研究[J]. 化工学报, 2025, 76(8): 4331-4340. |
| [8] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [9] | 郭梁, 陈烨, 贾启明, 谢秀娟. 液氦贮罐的自增压理论模拟及实验研究[J]. 化工学报, 2025, 76(7): 3561-3571. |
| [10] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [11] | 郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732. |
| [12] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| [13] | 王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973. |
| [14] | 刘峰, 韩春硕, 张益, 刘彦成, 郁林军, 申家伟, 高晓泉, 杨凯. 高温高盐环境下单烃链和双烃链表面活性剂对油水界面性质影响的微观机理研究[J]. 化工学报, 2025, 76(6): 2939-2957. |
| [15] | 李长宇, 曾强, 肖杰, 张阳杰, 张政, 林元华. PVDF对LATP基固态电解质膜界面修饰研究[J]. 化工学报, 2025, 76(6): 2974-2982. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号