化工学报 ›› 2025, Vol. 76 ›› Issue (11): 6099-6109.DOI: 10.11949/0438-1157.20250496
• 材料化学工程与纳米技术 • 上一篇
梁晟源1,2(
), 周如东1,2(
), 李文凯1,2, 王李军1,2, 李士阔3(
)
收稿日期:2025-05-07
修回日期:2025-07-02
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
周如东,李士阔
作者简介:梁晟源(1990—),男,博士,研发工程师,liangshy10@cnooc.com.cn
基金资助:
Shengyuan LIANG1,2(
), Rudong ZHOU1,2(
), Wenkai LI1,2, Lijun WANG1,2, Shikuo LI3(
)
Received:2025-05-07
Revised:2025-07-02
Online:2025-11-25
Published:2025-12-19
Contact:
Rudong ZHOU, Shikuo LI
摘要:
在信息通信技术日新月异的发展背景下,电磁波辐射问题影响人们身体健康和电子设备的正常工作。为解决上述问题,开发高性能电磁波吸收材料已成为当前科技发展的重要研究方向。作为磁性吸收剂中的重要组成部分,铁氧体吸波材料因合成工艺简单和具有良好的磁损耗优势受到广泛关注。然而其相对介电常数与阻抗匹配较差,难以满足宽频吸波需求。本实验以四氧化三铁为研究对象,通过引入金属镍作为催化剂,实现碳纳米管的原位生长。制备出Fe3O4/FeNi/CNT复合材料,丰富损耗机制和提高电磁波吸收性能。样品在频率4.88 GHz时,最小反射损耗(RLmin)可以达到-39.2 dB。在厚度为2.00 mm的条件下,有效吸收带宽(EAB)可以达到3.5 GHz。通过雷达截面(RCS)模拟证明Fe3O4/FeNi/CNT复合材料具有强电磁波吸收能力,适合应用于实际。本文可为优化铁氧体的吸收带宽和阻抗匹配提供参考。
中图分类号:
梁晟源, 周如东, 李文凯, 王李军, 李士阔. 金属诱导制备Fe3O4/FeNi/CNT复合材料及其吸波性能研究[J]. 化工学报, 2025, 76(11): 6099-6109.
Shengyuan LIANG, Rudong ZHOU, Wenkai LI, Lijun WANG, Shikuo LI. Study on electromagnetic wave absorption properties of Fe3O4/FeNi/CNT composites with magnetic-dielectric loss[J]. CIESC Journal, 2025, 76(11): 6099-6109.
图3 Fe3O4纳米颗粒(a)和样品S2(b)的扫描电子显微镜图;样品S2的透射电子显微镜图[(c),(d)]
Fig.3 SEM images of Fe3O4 nanoparticles (a) and sample S2 (b); TEM images of sample S2 [(c),(d)]
图5 样品S0,S1,S2,S3的介电常数实部ε′(a)、虚部ε″(b)、介电损耗正切tanδε (c)和磁导率实部μ′ (d)、虚部μ″ (e)、磁损耗正切tanδµ (f)
Fig.5 Complex permittivity real part ε′ (a), imaginary part ε″ (b), dielectric loss tangent tanδε (c), and complex permeability real part μ′ (d), imaginary part μ″ (e), magnetic loss tangent tanδµ (f) of S0, S1, S2, S3
图7 样品的Cole-Cole曲线[(a)~(c)],衰减常数(d),阻抗匹配(2.00 mm)(e)和C0曲线(f)
Fig.7 Cole-Cole curves [(a)—(c)], attenuation constant (d), impedance matching at thickness of 2.00 mm (e) and C0 curves (f) of samples
图8 S0,S1,S2,S3的电导率(a)、传导损耗(b)、极化损耗(c)和S2的反射损耗与阻抗匹配图(d)
Fig.8 Electrical conductivity (a), conduction loss (b), polarization loss (c) of S0, S1, S2, S3, and matching diagram of reflection loss and impedance of S2 (d)
图9 (a)入射角θ在-60°~60°范围内的PEC衬底和样品S1~S3的CST模拟示意图;(b)不同角度下的RCS模拟结果;(c)~(e)平均RCS衰减值和CST模拟
Fig.9 (a) Schematic diagram of the CST simulation model for the PEC substrate and S1—S3 at incident angles θ ranging from -60° to 60°; (b) RCS simulation results at different angles; (c)—(e) Mean RCS reduction and CST simulation results
| [20] | Liu X Y, Zhou J M, Xue Y, et al. Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption[J]. Nano-Micro Letters, 2024, 16(1): 174. |
| [21] | Wang S P, Liu Q C, Li S K, et al. Joule-heating-driven synthesis of a honeycomb-like porous carbon nanofiber/high entropy alloy composite as an ultralightweight electromagnetic wave absorber[J]. ACS Nano, 2024, 18(6): 5040-5050. |
| [22] | 胡兴枝, 张皓焱, 庄境坤, 等. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
| Hu X Z, Zhang H Y, Zhuang J K, et al. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles[J]. CIESC Journal, 2023, 74(8): 3584-3596. | |
| [23] | 张晓民, 党小来, 高红洁, 等.粉煤灰空心微珠@碳纳米管的吸波性能研究[J].化工矿物与加工, 2025, 54(2): 52-58. |
| Zhang X M, Dang X L, Gao H J, et al. Study on the wave-absorbing properties of fly ash cenospheres@carbon nanotubes[J]. Industrial Minerals & Processing, 2025, 54(2): 52-58. | |
| [24] | Cai H D, Guo J, Hu H B, et al. Carbon nanotube/FeNi3 nanoparticle composites for electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2024, 7(10): 11302-11312. |
| [25] | Guo Y M, Zhu Y W, Sun J, et al. MOF-derived carbon nanotube bridged Co/MoC@ NC composites for enhanced electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2025, 1010: 177346. |
| [26] | Chen Y K, Wang X Q, Cui W G, et al. Multiple Schottky contacts motivated via defects to tune the response ability of electromagnetic waves[J]. Advanced Functional Materials, 2025, 35(11): 2417215. |
| [27] | Rao L J, Wang L, Yang C D, et al. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption[J]. Advanced Functional Materials, 2023, 33(16): 2213258. |
| [28] | Luo J H, Yan W X, Li X P, et al. Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2023, 158: 207-217. |
| [29] | Zhou C Q, Lu J Y, Yuan M S, et al. Lightweight, thermal-insulating, flame-retardant Co@CNT composite carbon foam for efficient broadband electromagnetic wave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2025, 192: 108791. |
| [30] | Liu W, Shao Q W, Ji G B, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal, 2017, 313: 734-744. |
| [31] | 李敏, 孟献丰. ZIF-67衍生Co@C/MoS2纳米复合材料的制备及微波吸收性能[J].无机化学学报, 2024, 40(10): 1932-1942. |
| Li M, Meng X F. Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. | |
| [32] | Liu J L, Liang H S, Wei B, et al. "Matryoshka doll" heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption[J]. Small Structures, 2023, 4(7): 2200379. |
| [33] | 郭铮铮, 赵一丹, 王辅强, 等. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J].化工学报, 2025, 76(7): 3719-3732. |
| Guo Z Z, Zhao Y D, Wang F Q, et al. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture[J]. CIESC Journal, 2025, 76(7): 3719-3732. | |
| [34] | Luo J H, Li X P, Yan W X, et al. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption[J]. Carbon, 2023, 205: 552-561. |
| [35] | Shi X L, Cao M S, Yuan J, et al. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability[J]. Applied Physics Letters, 2009, 95(16): 163108. |
| [36] | Li L W, Ban Q F, Song Y J, et al. Self-templating engineering of hollow N-doped carbon microspheres anchored with ternary FeCoNi alloys for low-frequency microwave absorption[J]. Small, 2024, 20(50): 2406602. |
| [37] | Zhou C L, Wang X X, Luo H, et al. Rapid and direct growth of bipyramid TiO2 from Ti3C2T x MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption[J]. Chemical Engineering Journal, 2020, 383: 123095. |
| [38] | Wang J J, Wang C, Yang H T, et al. Lightweight asymmetric C/SiC nanofiber film with conductive-dielectric gradient for adjustable electromagnetic interference shielding[J]. Carbon, 2025, 235: 120068. |
| [39] | Zhang Z Q, Wang B J, Wang G H, et al. Embedded Ni/NiO heterostructure in MoO3– x nanorods toward reinforced interfacial polarization for electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2024, 7(16): 19548-19560. |
| [40] | Yang X, Qiu B Y, Li X J, et al. In-situ growth of FeCoNi nanoparticles onto 1D bamboo fiber carbon for enhanced electromagnetic wave absorption[J]. Carbon, 2024, 219: 118804. |
| [1] | Li Q, Zhang Z, Qi L P, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]. Advanced Science, 2019, 6(8): 1801057. |
| [2] | Xia Y X, Gao W W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. |
| [3] | Zeng X J, Wu L S, Yang X F, et al. Design of gel-based materials for electromagnetic wave absorption[J]. Advanced Functional Materials, 2025, 35(33): 2502671. |
| [4] | Tao J Q, Yan Y, Zhou J T, et al. Anionic high-entropy doping engineering for electromagnetic wave absorption[J]. Nature Communications, 2025, 16: 3163. |
| [5] | Cui A G, Wang C, Miao Y K, et al. B─C bonding configuration manipulation strategy toward synergistic optimization of polarization loss and conductive loss for highly efficient electromagnetic wave absorption[J]. Advanced Functional Materials, 2025, 35(15): 2420292. |
| [6] | You X, Ouyang H Y, Deng R X, et al. Graphene aerogel composites with self-organized nanowires-packed honeycomb structure for highly efficient electromagnetic wave absorption[J]. Nano-Micro Letters, 2024, 17(1): 47. |
| [7] | 陈宏刚, 雷俊, 何巍, 等. Ti3C2T x @CNTs/Ni空心球复合材料的制备及其吸波性能研究[J].功能材料, 2025, 56(5): 5192-5198. |
| Chen H G, Lei J, He W, et al. Preparation of Ti3C2T x @CNTs/Ni hollow sphere composites and their wave-absorbing properties[J]. Journal of Functional Materials, 2025, 56(5): 5192-5198. | |
| [8] | Wei Z H, Li Z C, Chen D W, et al. Recent progress of advanced composites for broadband electromagnetic wave absorption[J]. Small Structures, 2025, 6(7): 2400615. |
| [9] | Tan D L, Wang Q, Li M R, et al. Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 492: 152245. |
| [10] | 马茜, 强荣, 邵玉龙, 等.MOFs衍生钴/碳复合材料的制备及吸波性能研究[J].材料导报, 2025, 39(11): 181-189. |
| Ma Q, Qiang R, Shao Y L, et al. Preparation and absorption properties of Co/C composites derived from MOFs[J]. Materials Reports, 2025, 39(11): 181-189. | |
| [11] | Luo J W, Lv Z, Zhang L P, et al. Modulation of dielectric behavior in ceramic‐based materials for integrated electromagnetic waves absorption and thermal conduction[J]. Advanced Functional Materials, 2025, 35(24): 2420086. |
| [12] | 蒙真真, 武志红, 刘新伟, 等. 竹节状碳化硅晶须吸波性能研究[J]. 化工学报, 2020, 71(4): 1889-1897. |
| Meng Z Z, Wu Z H, Liu X W, et al. Study on absorbing properties of bamboo-like silicon carbide whiskers[J]. CIESC Journal, 2020, 71(4): 1889-1897. | |
| [13] | Lu C X, Zhao J Q, An Z J, et al. Biomass-derived spherical carbon materials for efficient electromagnetic wave absorption[J]. ACS Applied Electronic Materials, 2024, 6(10): 7623-7632. |
| [14] | 张丰发, 布和巴特尔, 齐海群, 等.碳基磁性复合材料在电磁波吸收领域的研究进展[J].黑龙江工程学院学报,2021, 35(2): 1-6. |
| Zhang F F, Buhe B T E, Qi H Q, et al. Research on the progress of carbon-based magnetic composites in electromagnetic wave absorption field[J]. Journal of Heilongjiang Institute of Technology, 2021, 35(2): 1-6. | |
| [15] | 王皓, 刘子义, 周青青, 等. Fe3O4-MXene的电磁波吸收性能[J].磁性材料及器件, 2025, 56(2): 31-36. |
| Wang H, Liu Z Y, Zhou Q Q, et al. Electromagnetic wave absorption performance of Fe3O4-MXene[J]. Journal of Magnetic Materials and Devices, 2025, 56(2): 31-36. | |
| [16] | Chen L Z, Pan J J, Wang T, et al. 1D magnetic nickel-carbon matrix nanotube composites derived from hydrogen-bonded organic frameworks and metal-organic frameworks for electromagnetic wave absorption[J]. Advanced Functional Materials, 2025, 35(3): 2409432. |
| [17] | Wu T, Ren F, Guo Z Z, et al. Hierarchical assembly of ternary MOF-derived sandwich composites for high-efficiency tunable electromagnetic wave absorption[J]. Small, 2024, 20(52): 2407599. |
| [18] | Wang J Y, Zhou J T, Van Zalinge H, et al. Hollow spherical SiC@Ni composites towards the tunable wideband electromagnetic wave absorption[J]. Composites Part B: Engineering, 2024, 276: 111361. |
| [19] | Zhao R, Khalifa M E, Hessien M M, et al. Fabrication of carbon fibers doped with Prussian blue derivative composites for enhanced electromagnetic wave absorption[J]. Advanced Composites and Hybrid Materials, 2024, 7(5): 177. |
| [1] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [2] | 张帅, 徐嘉宇, 华蕾娜, 葛蔚. 气固系统的CG-DPM与MP-PIC耦合模拟方法[J]. 化工学报, 2025, 76(9): 4412-4424. |
| [3] | 王钰, 冯英楠, 王涛, 赵之平. 原位生长构筑纳米复合纳滤膜:膜制备与应用[J]. 化工学报, 2025, 76(9): 4723-4736. |
| [4] | 吴阿强, 诸葛祥群, 刘通, 王明星, 罗鲲. 纳米普鲁士蓝悬浮电解液对锂氧电池性能的影响[J]. 化工学报, 2025, 76(8): 4310-4317. |
| [5] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [6] | 郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732. |
| [7] | 彭健, 沈鲁恺, 王立坤, 忻利宏, 刘涌, 赵高凌, 马赛男, 韩高荣. 钨酸盐纳米材料的制备及其在电致变色领域的研究进展[J]. 化工学报, 2025, 76(6): 2451-2468. |
| [8] | 郭乃胜, 朱小波, 王双, 陈平, 褚召阳, 王志臣. 聚氨酯改性沥青高低温性能及影响因素的研究进展[J]. 化工学报, 2025, 76(6): 2505-2523. |
| [9] | 王金月, 谢恩泽, 马翰泽, 袁晟, 何光伟, 姜忠义. 单原子层分离膜:进展与展望[J]. 化工学报, 2025, 76(5): 1943-1959. |
| [10] | 石孟琪, 王欢, 王守娟, 席跃宾, 孔凡功. 木质素基炭材料的制备及其在锂硫电池中的研究进展[J]. 化工学报, 2025, 76(4): 1463-1483. |
| [11] | 赵英东, 姬沛君, 丛日尧, 付海超, 张家龙, 陈鹏忠, 彭孝军. 丙烯酸配位有机锡光刻胶的制备及高分辨光刻研究[J]. 化工学报, 2025, 76(4): 1820-1830. |
| [12] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [13] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [14] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
| [15] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号