化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1463-1483.DOI: 10.11949/0438-1157.20241188
石孟琪1(
), 王欢2, 王守娟1, 席跃宾1(
), 孔凡功1(
)
收稿日期:2024-10-24
修回日期:2024-12-23
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
席跃宾,孔凡功
作者简介:石孟琪(2000—),女,硕士研究生,1656461554@qq.com
基金资助:
Mengqi SHI1(
), Huan WANG2, Shoujuan WANG1, Yuebin XI1(
), Fangong KONG1(
)
Received:2024-10-24
Revised:2024-12-23
Online:2025-04-25
Published:2025-05-12
Contact:
Yuebin XI, Fangong KONG
摘要:
木质素作为自然界储量丰富的芳香族高聚物,其结构中富含羟基、羧基、醚基等多种官能团,这些官能团可以使木质素通过简单温和的化学活化制备多孔炭材料,该炭材料通常具有较大的比表面积和多孔结构,有利于硫的负载和电解液的渗透。由于锂硫(Li-S)电池展现出高理论比能量、环境友好、成本低廉等优势,它被看作是超越锂离子电池能量密度极限的最有潜力的备选电池之一。本文综述了木质素基多孔炭的制备方法以及在锂硫电池中的应用,并对木质素基炭材料的未来应用前景进行了展望。
中图分类号:
石孟琪, 王欢, 王守娟, 席跃宾, 孔凡功. 木质素基炭材料的制备及其在锂硫电池中的研究进展[J]. 化工学报, 2025, 76(4): 1463-1483.
Mengqi SHI, Huan WANG, Shoujuan WANG, Yuebin XI, Fangong KONG. Research progress of lignin-based polyporous carbon in lithium-sulfur batteries[J]. CIESC Journal, 2025, 76(4): 1463-1483.
| 原料 | 活化工艺 | 比表面积/ (m2·g-1) | 孔隙体积/ (cm3·g-1) | 储能/催化/吸附性能 |
|---|---|---|---|---|
| 酶解木质素 | K2CO3活化[ | 2300 | 1.13 | 1 A·g-1下,1000 次循环后比容量为260 mAh·g-1 |
| 硫酸盐木质素 | 蒸汽物理化学活化[ | 1148 | 1.0 | — |
| 木质素衍生物 | 水热处理和活化[ | 2218 | — | 1 A·g-1下电容为312 F·g-1 |
| 针叶木质素 | KOH/NaOH活化[ | 1307 | 0.74 | — |
| 低硫酸性木质素 | H3PO4活化[ | 2015 | 0.99 | — |
| 未改性木质素 | KOH活化[ | 1899.45 | 1.059 | 0.5 A·g-1下电容为217.3 F·g-1 |
| 碱木质素 | ZnC2O4活化[ | 1139 | 2.954 | 0.5 A·g-1下电容为254 F·g-1 |
| 木质素磺酸钠 | ZnCl2活化[ | 1459.3 | 0.9085 | — |
| 碱木质素 | KOH/NaOH活化、MgO为硬模板[ | 1962.87 | 2.17 | 0.63 V下的峰值功率密度为133 mW·cm-2 |
| 煤沥青 | 热解[ | — | — | 气化速率 4.5×10-1 |
| 核桃壳 | K2CO3活化[ | 60 | — | 0.5 A·g-1下电容为 255 F·g-1 |
| 稻壳 | K2CO3活化[ | 1583 | 孔径3.2 nm | 0.1 C下的初始放电容量为 1080 mAh·g-1 |
| 木材 | NaOH活化[ | 2909 | 1.6 | Tafel斜率分别为-90.6和-88.0 mV·dec-1 |
| 玉米芯 | H3PO4活化[ | — | 孔径3.35 nm | 吸收183.3 mg·g-1 MB染料 |
| 秸秆 | KOH活化[ | 1999.96 | — | 对H2S的吸附容量为61.47 mg·g-1 |
| 可溶性淀粉 | KOH活化[ | 1162 | 0.33 | 1 A·g-1下电容为 165 F·g-1 |
| 竹屑 | 蒸汽活化[ | 1210 | 0.542 | 单层吸附容量为330 mg·g-1 |
表1 不同活化工艺所得的多孔炭的结构参数
Table 1 Structural parameters of porous carbon obtained by different activation processes
| 原料 | 活化工艺 | 比表面积/ (m2·g-1) | 孔隙体积/ (cm3·g-1) | 储能/催化/吸附性能 |
|---|---|---|---|---|
| 酶解木质素 | K2CO3活化[ | 2300 | 1.13 | 1 A·g-1下,1000 次循环后比容量为260 mAh·g-1 |
| 硫酸盐木质素 | 蒸汽物理化学活化[ | 1148 | 1.0 | — |
| 木质素衍生物 | 水热处理和活化[ | 2218 | — | 1 A·g-1下电容为312 F·g-1 |
| 针叶木质素 | KOH/NaOH活化[ | 1307 | 0.74 | — |
| 低硫酸性木质素 | H3PO4活化[ | 2015 | 0.99 | — |
| 未改性木质素 | KOH活化[ | 1899.45 | 1.059 | 0.5 A·g-1下电容为217.3 F·g-1 |
| 碱木质素 | ZnC2O4活化[ | 1139 | 2.954 | 0.5 A·g-1下电容为254 F·g-1 |
| 木质素磺酸钠 | ZnCl2活化[ | 1459.3 | 0.9085 | — |
| 碱木质素 | KOH/NaOH活化、MgO为硬模板[ | 1962.87 | 2.17 | 0.63 V下的峰值功率密度为133 mW·cm-2 |
| 煤沥青 | 热解[ | — | — | 气化速率 4.5×10-1 |
| 核桃壳 | K2CO3活化[ | 60 | — | 0.5 A·g-1下电容为 255 F·g-1 |
| 稻壳 | K2CO3活化[ | 1583 | 孔径3.2 nm | 0.1 C下的初始放电容量为 1080 mAh·g-1 |
| 木材 | NaOH活化[ | 2909 | 1.6 | Tafel斜率分别为-90.6和-88.0 mV·dec-1 |
| 玉米芯 | H3PO4活化[ | — | 孔径3.35 nm | 吸收183.3 mg·g-1 MB染料 |
| 秸秆 | KOH活化[ | 1999.96 | — | 对H2S的吸附容量为61.47 mg·g-1 |
| 可溶性淀粉 | KOH活化[ | 1162 | 0.33 | 1 A·g-1下电容为 165 F·g-1 |
| 竹屑 | 蒸汽活化[ | 1210 | 0.542 | 单层吸附容量为330 mg·g-1 |
| 1 | Fang R P, Zhao S Y, Sun Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823. |
| 2 | Zhang K L, Xia X H, Deng S J, et al. Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction[J]. Nano-Micro Letters, 2019, 11(1): 21. |
| 3 | Zhang Y, Xia X H, Liu B, et al. Multiscale graphene-based materials for applications in sodium ion batteries[J]. Advanced Energy Materials, 2019, 9(8): 1803342. |
| 4 | Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
| 5 | Xing Z Y, Li G R, Sy S, et al. Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance[J]. Nano Energy, 2018, 54: 1-9. |
| 6 | Yang Y, Risse S, Mei S L, et al. Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography[J]. Energy Storage Materials, 2017, 9: 96-104. |
| 7 | Han J, Jang H, Thi Bui H, et al. Stable performance of Li-S battery: engineering of Li2S smart cathode by reduction of multilayer graphene-embedded 2D-MoS2 [J]. Journal of Alloys and Compounds, 2021, 862: 158031. |
| 8 | Wang L J, Zhang T R, Yang S Q, et al. A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2013, 22(1): 72-77. |
| 9 | Liu S H, Li J, Yan X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2018, 30(12): 1706895. |
| 10 | Lee D J, Agostini M, Park J W, et al. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution[J]. ChemSusChem, 2013, 6(12): 2245-2248. |
| 11 | Zhou G M, Zhao S Y, Wang T S, et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries[J]. Nano Letters, 2020, 20(2): 1252-1261. |
| 12 | Liu Z X, Deng H Q, Hu W Y, et al. Revealing reaction mechanisms of nanoconfined Li2S: implications for lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 11713-11721. |
| 13 | Li Y J, Zhan H, Liu S Q, et al. Electrochemical properties of the soluble reduction products in rechargeable Li/S battery[J]. Journal of Power Sources, 2010, 195(9): 2945-2949. |
| 14 | Liu X B, Xiao Z C, Lai C G, et al. Three-dimensional carbon framework as high-proportion sulfur host for high-performance lithium-sulfur batteries[J]. Journal of Materials Science & Technology, 2020, 48: 84-91. |
| 15 | Zhou Y, Candelaria S L, Liu Q, et al. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability[J]. Journal of Materials Chemistry A, 2014, 2(22): 8472-8482. |
| 16 | Li G, Wang X L, Seo M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nature Communications, 2018, 9(1): 705. |
| 17 | Li H X, Ma S, Li J W, et al. Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 26: 203-212. |
| 18 | Wang J N, Yi S S, Liu J W, et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries[J]. ACS Nano, 2020, 14(8): 9819-9831. |
| 19 | Zhao S R, Li C M, Wang W K, et al. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(10): 3334-3339. |
| 20 | Yuan S Y, Kong T Y, Zhang Y Y, et al. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions[J]. Angewandte Chemie International Edition, 2021, 60(49): 25624-25638. |
| 21 | Hood Z D, Wang H, Samuthira Pandian A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. Journal of the American Chemical Society, 2016, 138(6): 1768-1771. |
| 22 | Zha C Y, Wu D H, Zhang T K, et al. A facile and effective sulfur loading method: direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery[J]. Energy Storage Materials, 2019, 17: 118-125. |
| 23 | Evers S, Yim T, Nazar L F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19653-19658. |
| 24 | Li W Y, Yao H B, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6: 7436. |
| 25 | Brenelli L B, Mandelli F, Mercadante A Z, et al. Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity[J]. Industrial Crops and Products, 2016, 83: 94-103. |
| 26 | Wang H, Xiong F Q, Tan Y J, et al. Preparation and formation mechanism of covalent-noncovalent forces stabilizing lignin nanospheres and their application in superhydrophobic and carbon materials[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(10): 3811-3820. |
| 27 | Feng P X, Wang H, Gan S Y, et al. Novel lignin-functionalized waterborne epoxy composite coatings with excellent anti-aging, UV resistance, and interfacial anti-corrosion performance[J]. Small, 2024, 20(28): e2312085. |
| 28 | Ponomarev N, Sillanpää M. Combined chemical-templated activation of hydrolytic lignin for producing porous carbon[J]. Industrial Crops and Products, 2019, 135: 30-38. |
| 29 | Ma Z H, Han Y, Qi J J, et al. High iodine adsorption by lignin-based hierarchically porous flower-like carbon nanosheets[J]. Industrial Crops and Products, 2021, 169: 113649. |
| 30 | Zhang W L, Qiu X Q, Wang C W, et al. Lignin derived carbon materials: current status and future trends[J]. Carbon Research, 2022, 1(1): 14. |
| 31 | Supanchaiyamat N, Jetsrisuparb K, Knijnenburg J T N, et al. Lignin materials for adsorption: current trend, perspectives and opportunities[J]. Bioresource Technology, 2019, 272: 570-581. |
| 32 | Meng Q W, Chen B Y, Jian W B, et al. Hard carbon anodes for sodium-ion batteries: dependence of the microstructure and performance on the molecular structure of lignin[J]. Journal of Power Sources, 2023, 581: 233475. |
| 33 | Zheng J Q, Wu Y L, Guan C H, et al. Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance[J]. Carbon Energy, 2024, 6(9): e538. |
| 34 | Zhao Z H, Hao S M, Hao P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A, 2015, 3(29): 15049-15056. |
| 35 | Cui J H, Zhao Z Y, Ren Y Q, et al. Excellent cycle stability of Fe loaded on N-doped activated carbon for microwave hydrogenolysis of lignin[J]. Chemical Engineering Journal, 2024, 502: 158001. |
| 36 | Xu J, Su D W, Zhang W X, et al. A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(44): 17381-17393. |
| 37 | Pozio A, Di Carli M, Aurora A, et al. Hard carbons for use as electrodes in Li-S and Li-ion batteries[J]. Nanomaterials, 2022, 12(8): 1349. |
| 38 | Xia G, Ye J J, Zheng Z Q, et al. Catalytic FeP decorated carbon black as a multifunctional conducting additive for high-performance lithium-sulfur batteries[J]. Carbon, 2021, 172: 96-105. |
| 39 | Kang W M, Fan L L, Deng N P, et al. Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries[J]. Chemical Engineering Journal, 2018, 333: 185-190. |
| 40 | Lobato-Peralta D R, Duque-Brito E, Villafán-Vidales H I, et al. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications[J]. Journal of Cleaner Production, 2021, 293: 126123. |
| 41 | Robertson D, Nousiainen P, Pitkänen L, et al. Carbonisation of lignin in the presence of a eutectic salt mixture: identifying the lignin properties that govern the characteristics of the resulting carbon material[J]. Journal of Analytical and Applied Pyrolysis, 2024, 183: 106811. |
| 42 | Zhang B L, Jin Y P, Yu Y B, et al. Biochar with enhanced performance prepared from bio-regulated lignocellulose for efficient removal of organic pollutants from wastewater[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110526. |
| 43 | Bing R G, Sulis D B, Carey M J, et al. Beyond low lignin: identifying the primary barrier to plant biomass conversion by fermentative bacteria[J]. Science Advances, 2024, 10(42): eadq4941. |
| 44 | Kane S, Hodge D B, Saulnier B, et al. Role of sodium sulfate in electrical conductivity and structure of lignin-derived carbons[J]. Journal of Analytical and Applied Pyrolysis, 2024, 181: 106600. |
| 45 | Xi Y B, Wang Y Y, Yang D J, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. |
| 46 | Saha D, Li Y C, Bi Z H, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
| 47 | Zhang L M, You T T, Zhou T, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13918-13925. |
| 48 | Yang Z, Gleisner R H, Mann D, et al. Lignin based activated carbon using H3PO4 activation[J]. Polymers, 2020, 12(12): 2829. |
| 49 | Li W, Wang G H, Sui W J, et al. Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes[J]. Carbon, 2022, 196: 819-827. |
| 50 | Feng P X, Wang H, Huang P P, et al. Nitrogen-doped lignin-derived porous carbons for supercapacitors: effect of nanoporous structure[J]. Chemical Engineering Journal, 2023, 471: 144817. |
| 51 | Zhao J, Wang Q C, Zhang W J, et al. Unravelling the performance of N-doped lignin-derived carbon materials during electro-catalytic reduction of CO2 [J]. International Journal of Hydrogen Energy, 2024, 67: 127-135. |
| 52 | Ma Z H, Han Y, Wang X, et al. Lignin-derived hierarchical porous flower-like carbon nanosheets decorated with biomass carbon quantum dots for efficient oxygen reduction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652: 129818. |
| 53 | Byambajav E, Paysepar H, Nazari L, et al. Co-pyrolysis of lignin and low rank coal for the production of aromatic oils[J]. Fuel Processing Technology, 2018, 181: 1-7. |
| 54 | Xu X Y, Gao J P, Tian Q, et al. Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor[J]. Applied Surface Science, 2017, 411: 170-176. |
| 55 | Mai T T, Vu D L, Huynh D C, et al. Cost-effective porous carbon materials synthesized by carbonizing rice husk and K2CO3 activation and their application for lithium-sulfur batteries[J]. Journal of Science: Advanced Materials and Devices, 2019, 4(2): 223-229. |
| 56 | Dobele G, Volperts A, Plavniece A, et al. Thermochemical activation of wood with NaOH, KOH and H3PO4 for the synthesis of nitrogen-doped nanoporous carbon for oxygen reduction reaction[J]. Molecules, 2024, 29(10): 2238. |
| 57 | Jawad A H, Bardhan M, Islam M A, et al. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation[J]. Surfaces and Interfaces, 2020, 21: 100688. |
| 58 | Cui S B, Zhao Y, Liu Y X, et al. Preparation of straw porous biochars by microwave-assisted KOH activation for removal of gaseous H2S[J]. Energy & Fuels, 2021, 35(22): 18592-18603. |
| 59 | Guo N N, Ma R, Feng P Y, et al. Soluble starch-derived porous carbon microspheres with interconnected and hierarchical structure by a low dosage KOH activation for ultrahigh rate supercapacitors[J]. International Journal of Biological Macromolecules, 2024, 262: 130254. |
| 60 | Zhang Y J, Xing Z J, Duan Z K, et al. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste[J]. Applied Surface Science, 2014, 315: 279-286. |
| 61 | Li T Y, Pan H, Xu L H, et al. Preparation and properties of lignin-based carbon/ZnO photocatalytic materials[J]. Journal of Porous Materials, 2022, 29(6): 1883-1893. |
| 62 | Lou R, Tian J, Zhang Y N, et al. Fabrication of hierarchical lignin-based carbon through direct high-temperature pyrolysis and its electrochemical application[J]. ACS Omega, 2021, 6(49): 34129-34136. |
| 63 | Liu H Y, Chen H S, Shi K Y, et al. Lignin-derived porous carbon for zinc-ion hybrid capacitor[J]. Industrial Crops and Products, 2022, 187: 115519. |
| 64 | Fu J Q, Bai L, Chi M S, et al. Study on the evolution pattern of the chemical structure of Fenton pretreated lignin during hydrothermal carbonization[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107184. |
| 65 | Melilli G, Adolfsson K H, Impagnatiello A, et al. Intriguing carbon flake formation during microwave-assisted hydrothermal carbonization of sodium lignosulfonate[J]. Global Challenges, 2020, 4(8): 1900111. |
| 66 | Wu Y, Cao J P, Zhao X Y, et al. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2 [J]. Applied Surface Science, 2020, 508: 144536. |
| 67 | Shabir S, Hussain S Z, Ahmad Bhat T, et al. High carbon content microporous activated carbon from thin walnut shells: optimization, physico-chemical analysis and structural profiling[J]. Process Safety and Environmental Protection, 2024, 190: 85-96. |
| 68 | Zhou X Y, Li H C, Yang J. Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes[J]. Journal of Energy Chemistry, 2016, 25(1): 35-40. |
| 69 | Babeł K, Jurewicz K. KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption[J]. Carbon, 2008, 46(14): 1948-1956. |
| 70 | Gao Y, Yue Q Y, Gao B Y, et al. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(Ⅱ) adsorption[J]. Chemical Engineering Journal, 2013, 217: 345-353. |
| 71 | Liu D C, Zhang W L, Liu D B, et al. Template-free synthesis of lignin-derived 3D hierarchical porous carbon for supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 7009-7018. |
| 72 | Myglovets M, Poddubnaya O I, Sevastyanova O, et al. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions[J]. Carbon, 2014, 80: 771-783. |
| 73 | Moulefera I, García-Mateos F J, Benyoucef A, et al. Effect of co-solution of carbon precursor and activating agent on the textural properties of highly porous activated carbon obtained by chemical activation of lignin with H3PO4 [J]. Frontiers in Materials, 2020, 7: 153. |
| 74 | Xiong L Y Z, Liu B W, Du L, et al. Bimetallic NiCoP catalysts anchored on phosphorus-doped lignin-based carbon for robust oxygen evolution performance[J]. Rare Metals, 2024, 43(7): 3084-3095. |
| 75 | Wei W Q, Wang B X, Huang X R, et al. Potassium salts activated lignin-based biochar as an effective adsorbent for malachite green adsorption[J]. International Journal of Biological Macromolecules, 2024, 277: 134209. |
| 76 | Wu C, Ding J, Tindall G W, et al. The role of lignin molecular weight on activated carbon pore structure[J]. Molecules, 2024, 29(16): 3879. |
| 77 | Xi Y B, Huang S, Yang D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
| 78 | Ge W N, Zhou Z P, Zhang P, et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 456-467. |
| 79 | Zhang B P, Yang D J, Qian Y, et al. Engineering a lignin-based hollow carbon with opening structure for highly improving the photocatalytic activity and recyclability of ZnO[J]. Industrial Crops and Products, 2020, 155: 112773. |
| 80 | Zhang B P, Yang D J, Qiu X Q, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability[J]. Carbon, 2020, 162: 256-266. |
| 81 | Xie A T, Dai J D, Chen Y, et al. NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline[J]. Advanced Powder Technology, 2019, 30 (1): 170-179. |
| 82 | Li S Y, Jiang Z Y, Liu A M, et al. A porous carbon based on the surface and structural regulation of wasted lignin for long-cycle lithium-ion battery[J]. International Journal of Biological Macromolecules, 2022, 222: 1414-1422. |
| 83 | Sun D L, Yu X C, Ji X Q, et al. Nickel/woodceramics assembled with lignin-based carbon nanosheets and multilayer graphene as supercapacitor electrode[J]. Journal of Alloys and Compounds, 2019, 805: 327-337. |
| 84 | Bergna D, Varila T, Romar H, et al. Activated carbon from hydrolysis lignin: effect of activation method on carbon properties[J]. Biomass and Bioenergy, 2022, 159: 106387. |
| 85 | Pathak A D, Cha E, Choi W. Towards the commercialization of Li-S battery: from lab to industry[J]. Energy Storage Materials, 2024, 72: 103711. |
| 86 | Cheng J, Liu Y C, Zhang X X, et al. Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 419: 129649. |
| 87 | Chen Z Z, Lu M J, Qian Y, et al. Ultra-low dosage lignin binder for practical lithium-sulfur batteries[J]. Advanced Energy Materials, 2023, 13(17): 2300092. |
| 88 | Liu F Y, Feng P, Yuan M, et al. Continuous preparation of a flexible carbon nanotube film from lignin as a sulfur host material for lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(46): 16544-16553. |
| 89 | Yeon J S, Park S H, Suk J, et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382: 122946. |
| 90 | Zhang Z Y, Yi S, Wei Y J, et al. Lignin nanoparticle-coated Celgard separator for high-performance lithium-sulfur batteries[J]. Polymers, 2019, 11(12): 1946. |
| 91 | Jiang S X, Chen M F, Wang X Y, et al. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 355: 478-486. |
| 92 | Luo W B, He Q, Zhang C Q, et al. Lignin-based polymer networks enabled N, S co-doped defect-rich hierarchically porous carbon anode for long-cycle Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(7): 2881-2892. |
| 93 | Tian Y H, Yang Z Y, Wang H, et al. Nitrogen-doped 3D carbon hybrids based on modified lignin as sulfur host for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2024, 621: 235322. |
| 94 | Liu C, Hou Y, Li Y M, et al. Heteroatom-doped porous carbon microspheres derived from ionic liquid-lignin solution for high performance supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 614: 566-573. |
| 95 | Li W, Zhang W H, Xu Y, et al. Heteroatom-doped lignin derived carbon materials with improved electrochemical performance for advanced supercapacitors[J]. Chemical Engineering Journal, 2024, 497: 154829. |
| 96 | Liu T, Sun S M, Song W, et al. A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23486-23494. |
| 97 | Qu Q, Guo J, Wang H Y, et al. Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery[J]. Electrochimica Acta, 2024, 473: 143454. |
| 98 | Wang J Y, Fan D Z, Zhang L Z, et al. Lignin-derived hierarchical porous carbon with high surface area and interconnected pores for efficient antibiotics adsorption[J]. Chemical Engineering Journal, 2023, 454: 139789. |
| 99 | Lu M J, Chen K, Jia Z Y, et al. Ion-selective gel polymer electrolyte and cathode binder derived from a shared polyether to synergistically mitigate polysulfides shuttling in lithium sulfur batteries[J]. Energy Storage Materials, 2024, 73: 103870. |
| 100 | Liu H Y, Xu T, Liu K, et al. Lignin-based electrodes for energy storage application[J]. Industrial Crops and Products, 2021, 165: 113425. |
| [1] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| [2] | 徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263. |
| [3] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [4] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [5] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
| [6] | 李文宝, 胡锦鹏, 杜淼, 潘鹏举, 单国荣. 强韧P(SBMA-co-AAc)/SiO2复合水凝胶海洋防污减阻涂层[J]. 化工学报, 2025, 76(2): 787-796. |
| [7] | 吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308. |
| [8] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
| [9] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
| [10] | 朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001. |
| [11] | 张祎琪, 谭雪松, 李吾环, 张权, 苗长林, 庄新姝. 温和条件下乙二醇苯醚高效分离回收甘蔗渣组分[J]. 化工学报, 2024, 75(6): 2274-2282. |
| [12] | 张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889. |
| [13] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
| [14] | 丁相斐, 丘晓琳, 朱喜成, 张佳伟, 陈锦华. pH响应性气体渗透CNC/PBAT复合膜的制备与性能[J]. 化工学报, 2024, 75(3): 1040-1051. |
| [15] | 盖星宇, 岳玉学, 杨春华, 张子龙, 蔡天姿, 张海丰, 王柏林, 李小年. 碳负载Cs和Cu基催化剂用于1,1,2-三氯乙烷的气相脱氯化氢[J]. 化工学报, 2024, 75(2): 575-583. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号