化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5853-5864.DOI: 10.11949/0438-1157.20250555
• 流体力学与传递现象 • 上一篇
王太1(
), 孙亦铁1,2, 李晟瑞1, 刘璐1(
), 闫润1, 王腾1, 董新宇1
收稿日期:2025-05-20
修回日期:2025-07-20
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
刘璐
作者简介:王太(1986—),男,博士,高级实验师,wangtai_1986@163.com
基金资助:
Tai WANG1(
), Yitie SUN1,2, Shengrui LI1, Lu LIU1(
), Run YAN1, Teng WANG1, Xinyu DONG1
Received:2025-05-20
Revised:2025-07-20
Online:2025-11-25
Published:2025-12-19
Contact:
Lu LIU
摘要:
为了探究液滴撞击热壁面的动力学及汽化特性,设计与搭建了可视化实验系统,探究了液滴相态变化特性,并针对典型工况开展了数值模拟分析。研究发现壁面温度与液滴撞击速度是影响液滴形变及壁面传热的重要因素。撞击速度的增加促进液滴铺展,增加液滴与壁面的接触面积从而增强传热,同时液膜变薄也有利于热量传递;壁面温度的升高会加快液滴汽化,引发液滴相态的转变,呈现膜态蒸发、接触沸腾、破碎雾化、雾化弹跳、膜态飞溅和中心射流六种相态。
中图分类号:
王太, 孙亦铁, 李晟瑞, 刘璐, 闫润, 王腾, 董新宇. 液滴撞击热壁面的动力学及汽化特性研究[J]. 化工学报, 2025, 76(11): 5853-5864.
Tai WANG, Yitie SUN, Shengrui LI, Lu LIU, Run YAN, Teng WANG, Xinyu DONG. Investigation on the dynamics and vaporization characteristics of droplet impact on the heated wall surface[J]. CIESC Journal, 2025, 76(11): 5853-5864.
| d0/mm | H/cm | v/(m/s) | We |
|---|---|---|---|
| 3.15 | 1 | 0.443 | 8.64 |
| 3 | 0.798 | 25.92 | |
| 5 | 0.997 | 43.20 | |
| 7 | 1.172 | 60.47 | |
| 9 | 1.330 | 77.75 | |
| 11 | 1.465 | 95.03 | |
| 13 | 1.596 | 112.31 | |
| 15 | 1.716 | 129.59 |
表1 液滴参数
Table 1 Droplet parameters
| d0/mm | H/cm | v/(m/s) | We |
|---|---|---|---|
| 3.15 | 1 | 0.443 | 8.64 |
| 3 | 0.798 | 25.92 | |
| 5 | 0.997 | 43.20 | |
| 7 | 1.172 | 60.47 | |
| 9 | 1.330 | 77.75 | |
| 11 | 1.465 | 95.03 | |
| 13 | 1.596 | 112.31 | |
| 15 | 1.716 | 129.59 |
| [1] | Xia H X, Kensuke T, Shin T, et al. Droplet morphology analysis of drop-on-demand inkjet printing[J]. China Foundry, 2024, 21(1): 20-28. |
| [2] | Lohse D. Fundamental fluid dynamics challenges in inkjet printing[J]. Annual Review of Fluid Mechanics, 2022, 54: 349-382. |
| [3] | 徐燕青, 李文飞, 吴梦瑶, 等. 用于喷墨印花染料纯化的自组装GO/TiO2复合纳滤膜的制备[J]. 化工学报, 2020, 71(3): 1352-1361. |
| Xu Y Q, Li W F, Wu M Y, et al. Preparation of self-assembled graphene oxide/nano TiO2 composite nanofiltration membrane for inkjet printing dye[J]. CIESC Journal, 2020, 71(3): 1352-1361. | |
| [4] | 孙睿, 王军锋, 许浩洁, 等. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025, 76(4): 1404-1421. |
| Sun R, Wang J F, Xu H J, et al. Research progress on heat transfer enhancement mechanism of spray cooling technology[J]. CIESC Journal, 2025, 76(4): 1404-1421. | |
| [5] | Niu Q, Wang Y, Kang N. The influence of droplet distribution coverage and additives on the heat transfer characteristics of spray cooling under the influence of different parameters[J]. Applied Sciences, 2022, 12(18): 9167. |
| [6] | Riaz Siddiqui F, Tso C Y, Qiu H H, et al. Hybrid nanofluid spray cooling performance and its residue surface effects: toward thermal management of high heat flux devices[J]. Applied Thermal Engineering, 2022, 211: 118454. |
| [7] | Jia D L, Liu Y C, Yi P, et al. Splat formation mechanism of droplet-filled cold-textured groove during plasma spraying[J]. Applied Thermal Engineering, 2020, 173: 115239. |
| [8] | 王瑞琪, 高赞军, 杨华, 等. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219. |
| Wang R Q, Gao Z J, Yang H, et al. Influence of airborne cold source parameters on evaporative cycle system performance[J]. CIESC Journal, 2020, 71(S1): 212-219. | |
| [9] | Tan H. Three-dimensional simulation of micrometer-sized droplet impact and penetration into the powder bed[J]. Chemical Engineering Science, 2016, 153: 93-107. |
| [10] | Thomas T M, Chowdhury I U, Dhivyaraja K, et al. Droplet dynamics on a wettability patterned surface during spray impact[J]. Processes, 2021, 9(3): 555. |
| [11] | Liang G T, Mudawar I. Review of drop impact on heated walls[J]. International Journal of Heat and Mass Transfer, 2017, 106: 103-126. |
| [12] | Bernardin J D, Stebbins C J, Mudawar I. Mapping of impact and heat transfer regimes of water drops impinging on a polished surface[J]. International Journal of Heat and Mass Transfer, 1997, 40(2): 247-267. |
| [13] | Bernardin J D, Stebbins C J, Mudawar I. Effects of surface roughness on water droplet impact history and heat transfer regimes[J]. International Journal of Heat and Mass Transfer, 1996, 40(1): 73-88. |
| [14] | di Marzo M, Evans D D. Evaporation of a water droplet deposited on a hot high thermal conductivity surface[J]. Journal of Heat Transfer, 1989, 111(1): 210-213. |
| [15] | Nakoryakov V E, Misyura S Y, Elistratov S L. The behavior of water droplets on the heated surface[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6609-6617. |
| [16] | Mao T, Kuhn D C S, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169-2179. |
| [17] | 陈宏霞, 李林涵, 高翔, 等. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565. |
| Chen H X, Li L H, Gao X, et al. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process[J]. CIESC Journal, 2022, 73(4): 1557-1565. | |
| [18] | Xiong T Y, Yuen M C. Evaporation of a liquid droplet on a hot plate[J]. International Journal of Heat and Mass Transfer, 1991, 34(7): 1881-1894. |
| [19] | Okawa T, Nagano K, Hirano T. Boiling heat transfer during single nanofluid drop impacts onto a hot wall[J]. Experimental Thermal and Fluid Science, 2012, 36: 78-85. |
| [20] | Kandlikar S G, Steinke M E. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface[J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3771-3780. |
| [21] | Qiu L, Dubey S, Choo F H, et al. The transitions of time-independent spreading diameter and splashing angle when a droplet train impinging onto a hot surface[J]. RSC Advances, 2016, 6(17): 13644-13652. |
| [22] | Leidenfrost J G. On the fixation of water in diverse fire[J]. International Journal of Heat and Mass Transfer, 1966, 9(11): 1153-1166. |
| [23] | Rueda Villegas L, Tanguy S, Castanet G, et al. Direct numerical simulation of the impact of a droplet onto a hot surface above the Leidenfrost temperature[J]. International Journal of Heat and Mass Transfer, 2017, 104: 1090-1109. |
| [24] | Gottfried B S, Lee C J, Bell K J. The Leidenfrost phenomenon: film boiling of liquid droplets on a flat plate[J]. International Journal of Heat and Mass Transfer, 1966, 9(11): 1167-1188. |
| [25] | Tran T, Staat H J J, Prosperetti A, et al. Drop impact on superheated surfaces[J]. Physical Review Letters, 2012, 108(3): 036101. |
| [26] | Manzello S L, Yang J C. An experimental study of high Weber number impact of methoxy-nonafluorobutane C4F9OCH3 (HFE-7100) and n-heptane droplets on a heated solid surface[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 3961-3971. |
| [27] | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
| [28] | Hoffman R L. A study of the advancing interface (Ⅰ): Interface shape in liquid-gas systems[J]. Journal of Colloid and Interface Science, 1975, 50(2): 228-241. |
| [29] | Lee W H. A Pressure Iteration Scheme for Two-phase Flow Modeling[M]. Washington, DC:Hemisphere Publishing,1980. |
| [30] | Yang K H, Jin K D, Xiong J W, et al. Interfacial heat transfer and boiling transition of the droplets on superheated surface with Leidenfrost effects[J]. International Journal of Heat and Mass Transfer, 2023, 212: 124297. |
| [31] | Singha S K, Das P K, Maiti B. Thermodynamic formulation of the barrier for heterogeneous pinned nucleation: implication to the crossover scenarios associated with barrierless and homogeneous nucleation[J]. The Journal of Chemical Physics, 2017, 146(23): 234702. |
| [1] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [2] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [3] | 王宇涛, 龚建英, 李祥宇, 吴馨, 刘秀芳. 基于压电-声流效应的液滴定向驱动技术研究[J]. 化工学报, 2025, 76(S1): 181-186. |
| [4] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [5] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [6] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [7] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [8] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [9] | 吴馨, 龚建英, 李祥宇, 王宇涛, 杨小龙, 蒋震. 超声波激励疏水表面液滴运动的实验研究[J]. 化工学报, 2025, 76(S1): 133-139. |
| [10] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [11] | 罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823. |
| [12] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| [13] | 胡金琦, 闵春华, 李小龙, 范元鸿, 王坤. 振动叶片耦合柔性板强化流体混沌混合与传热研究[J]. 化工学报, 2025, 76(9): 4824-4837. |
| [14] | 吴林凯, 林志敏, 王良璧. 基于热质传递效应的准稳态结霜模型改进及数值验证[J]. 化工学报, 2025, 76(8): 4004-4016. |
| [15] | 刘璐, 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润. 星形亲水区组合表面冷凝液滴脱落特性实验研究[J]. 化工学报, 2025, 76(8): 3905-3914. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号