• •
出版日期:2025-07-18
通讯作者:
李岩
作者简介:牛棒棒(1999—),男,硕士研究生,17634388572@163.com
基金资助:
Bangbang NIU1(
), Yan LI1,2(
), Chufeng DONG1, Xiang LI3,4
Online:2025-07-18
Contact:
Yan LI
摘要:
氢渗透是Ⅳ型储氢瓶安全服役的重要挑战,往往会加重聚合物内胆的损伤以及氢气的渗漏。针对Ⅳ型储氢瓶聚合物内胆氢渗透性能优化需求,以聚酰胺6(PA6)为研究对象,通过分子模拟,系统揭示了温度、压力、热氧老化及氧化石墨烯共聚改性对PA6氢渗透机制的影响规律。结果表明:温度升高(263K-353 K)使PA6氢渗透系数增大38.44%-162.90%,这是因为温度对扩散系数的增大作用占主导;压力升高(30MPa-60 MPa)通过减小自由体积(占主导作用),增大分子无规则速度,导致扩散系数出现下降的趋势,但一定的压力后,对分子无规则速度的增大作用占主导,扩散系数出现上升的趋势。热氧老化导致PA6主链断裂及极性基团生成,导致扩散系数最高增大125.5%,渗透系数最高增大114.09%。氧化石墨烯共聚改性通过延长氢分子扩散路径与降低自由体积,使扩散系数最高降低39.43%。
中图分类号:
牛棒棒, 李岩, 董楚峰, 李翔. Ⅳ型储氢瓶PA6内胆材料氢渗透性能和老化机制的分子动力学模拟研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250595.
Bangbang NIU, Yan LI, Chufeng DONG, Xiang LI. Molecular Dynamics Simulation Study on Hydrogen Permeation Performance and Aging Mechanism of PA6 Inner Liner Material for Type Ⅳ Hydrogen Storage Cylinders[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250595.
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 0.5426 | 0.3930 | 0.4251 | 0.4439 |
| 298 | 0.8751 | 0.8479 | 0.6352 | 0.7219 |
| 323 | 1.1945 | 1.0687 | 1.0520 | 1.0513 |
| 353 | 1.4750 | 1.2286 | 1.3103 | 1.3548 |
表1 不同压力与温度下的扩散系数(10-4cm2/s)
Table1 Diffusion coefficients under different pressures and temperatures(10-4cm2/s)
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 0.5426 | 0.3930 | 0.4251 | 0.4439 |
| 298 | 0.8751 | 0.8479 | 0.6352 | 0.7219 |
| 323 | 1.1945 | 1.0687 | 1.0520 | 1.0513 |
| 353 | 1.4750 | 1.2286 | 1.3103 | 1.3548 |
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 2.5601 | 1.8542 | 2.0057 | 2.0944 |
| 298 | 3.8253 | 3.7064 | 2.7766 | 3.1556 |
| 323 | 4.9388 | 4.4187 | 4.3496 | 4.3467 |
| 353 | 5.5824 | 4.8748 | 5.1989 | 5.3755 |
表2 不同压力与温度下的渗透系数(10-11 cm3(STP)·cm/(cm2·Pa·s))
Table2 Permeability coefficients under different pressures and temperatures(10-11 cm3(STP)·cm/(cm2·Pa·s))
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 2.5601 | 1.8542 | 2.0057 | 2.0944 |
| 298 | 3.8253 | 3.7064 | 2.7766 | 3.1556 |
| 323 | 4.9388 | 4.4187 | 4.3496 | 4.3467 |
| 353 | 5.5824 | 4.8748 | 5.1989 | 5.3755 |
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 0.6420 | 0.8862 | 0.8630 | 0.7655 |
| 298 | 1.0518 | 1.1115 | 1.0353 | 0.9881 |
| 323 | 1.2860 | 1.1827 | 1.1476 | 1.1147 |
| 353 | 1.8225 | 1.7348 | 1.6141 | 1.4575 |
表3 老化模型的扩散系数(10-4cm2/s)
Table3 Diffusion coefficient of the aging model(10-4cm2/s)
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 0.6420 | 0.8862 | 0.8630 | 0.7655 |
| 298 | 1.0518 | 1.1115 | 1.0353 | 0.9881 |
| 323 | 1.2860 | 1.1827 | 1.1476 | 1.1147 |
| 353 | 1.8225 | 1.7348 | 1.6141 | 1.4575 |
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 18.32% | 125.50% | 103.31% | 72.45% |
| 298 | 20.19% | 31.09% | 62.99% | 36.87% |
| 323 | 7.66% | 10.67% | 9.09% | 6.03% |
| 353 | 23.56% | 41.20% | 23.19% | 7.58% |
表4 老化模型与初始模型扩散系数对比
TAble.4 Comparison of diffusion coefficients between the aging model and the initial model
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 18.32% | 125.50% | 103.31% | 72.45% |
| 298 | 20.19% | 31.09% | 62.99% | 36.87% |
| 323 | 7.66% | 10.67% | 9.09% | 6.03% |
| 353 | 23.56% | 41.20% | 23.19% | 7.58% |
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 2.8759 | 3.9698 | 3.8658 | 3.4291 |
| 298 | 4.3781 | 4.6266 | 4.3094 | 4.1129 |
| 323 | 5.2361 | 4.8155 | 4.6726 | 4.5386 |
| 353 | 7.1271 | 6.7842 | 6.3121 | 5.6997 |
表5 老化模型的渗透系数(10-11 cm3(STP)·cm/(cm2·Pa·s))
Table5 Permeability coefficient of the aging model(10-11 cm3(STP)·cm/(cm2·Pa·s))
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 2.8759 | 3.9698 | 3.8658 | 3.4291 |
| 298 | 4.3781 | 4.6266 | 4.3094 | 4.1129 |
| 323 | 5.2361 | 4.8155 | 4.6726 | 4.5386 |
| 353 | 7.1271 | 6.7842 | 6.3121 | 5.6997 |
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 12.34% | 114.09% | 92.74% | 63.73% |
| 298 | 14.14% | 24.83% | 55.20% | 30.34% |
| 323 | 6.02% | 8.98% | 7.43% | 4.41% |
| 353 | 21.78% | 39.17% | 21.41% | 6.03% |
表6 老化模型与初始模型渗透系数对比
Table6 Comparison of permeability coefficients between the aging model and the initial model
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 12.34% | 114.09% | 92.74% | 63.73% |
| 298 | 14.14% | 24.83% | 55.20% | 30.34% |
| 323 | 6.02% | 8.98% | 7.43% | 4.41% |
| 353 | 21.78% | 39.17% | 21.41% | 6.03% |
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 0.4928 | 0.3789 | 0.3919 | 0.4060 |
| 298 | 0.6933 | 0.5573 | 0.5607 | 0.6856 |
| 323 | 0.8337 | 0.6473 | 0.7995 | 0.8374 |
| 353 | 1.2025 | 1.0085 | 0.9359 | 0.9817 |
表7 改性模型的扩散系数(10-4cm2/s)
Table7 Diffusion coefficient of the modified model(10-4cm2/s)
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 0.4928 | 0.3789 | 0.3919 | 0.4060 |
| 298 | 0.6933 | 0.5573 | 0.5607 | 0.6856 |
| 323 | 0.8337 | 0.6473 | 0.7995 | 0.8374 |
| 353 | 1.2025 | 1.0085 | 0.9359 | 0.9817 |
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 9.18% | 3.59% | 7.81% | 8.54% |
| 298 | 20.77% | 34.27% | 11.73% | 5.03% |
| 323 | 30.21% | 39.43% | 24.00% | 20.35% |
| 353 | 18.47% | 17.91% | 28.57% | 27.54% |
表8 改性模型与初始模型扩散系数对比
TAble.8 Comparison of diffusion coefficients between the modified model and the initial model
| T/K | p/ MPa | |||
|---|---|---|---|---|
| 30 | 41.6 | 52 | 60 | |
| 263 | 9.18% | 3.59% | 7.81% | 8.54% |
| 298 | 20.77% | 34.27% | 11.73% | 5.03% |
| 323 | 30.21% | 39.43% | 24.00% | 20.35% |
| 353 | 18.47% | 17.91% | 28.57% | 27.54% |
| [1] | 徐君臣, 银建中. 纤维缠绕复合材料气瓶研究进展[J]. 应用科技, 2012, 39(4):64-71. |
| Xu J C, Yin J Z. Progress in filament-wound composite gas cylinders[J]. Applied Science and Technology, 2012, 39(4): 64-71. | |
| [2] | Al-Juboori O, Sher F, Hazafa A, et al. The effect of variable operating parameters for hydrocarbon fuel formation from CO2 by molten salts electrolysis[J]. Journal of CO2 Utilization, 2020, 40: 101193. |
| [3] | 凌文, 李全生, 张凯. 我国氢能产业发展战略研究[J]. 中国工程科学, 2022, 24(3): 80-88. |
| Ling W, Li Q S, Zhang K. Development strategy of hydrogen energy industry in China[J]. Strategic Study of CAE, 2022, 24(3): 80-88. | |
| [4] | TANG H Y, WU Y B, XIONG L, et al. Research on quality assurance system of high pressure hydrogen storage cylinder for hydrogen fuel cell electric vehicle[J]. China Auto, 2020(12): 25-29. |
| [5] | LIU C W, PEI Y B, HAN H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498-514. |
| [6] | Su Y, Lv H, Zhou W, et al. Review of the Hydrogen Permeability of the Liner Material of Type Ⅳ On-Board Hydrogen Storage Tank[J]. World Electric Vehicle Journal, 2021, 12(3): 130. |
| [7] | Kanesugi H, Ohyama K, Fujiwara H, et al. High-pressure hydrogen permeability model for crystalline polymers[J]. International Journal of Hydrogen Energy, 2023, 48(2): 723-739. |
| [8] | 邱玥, 周苏洋, 顾伟, 等. "碳达峰、碳中和"目标下混氢天然气技术应用前景分析[J]. 中国电机工程学报, 2022, 42(4): 1301-1321. |
| Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(4): 1301-1321. | |
| [9] | 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478. |
| Cao J W, Qin X F, Geng G, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1461-1478. | |
| [10] | Kane M. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT [R]. South Carolina: Aiken, 2008. |
| [11] | 郭淑芬, 吕家龙, 高智惠, 等. 有关非金属内胆全缠绕储氢气瓶渗透参数的探讨[J]. 低温与特气, 2020, 38(5): 16-18. |
| Guo S F, Lü J L, Gao Z H, et al. Discussion on permeability brameters of fully-wrapped hydrogen storage cylinder with non-metal liner[J]. Low Temperature and Specialty Gases, 2020, 38(5): 16-18. | |
| [12] | Fang Q, Ji D M. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type IV hydrogen storage vessels[J]. Materials Today Communications, 2023, 35: 106302. |
| [13] | Sun Y, Lv H, Zhou W, et al. Research on hydrogen permeability of polyamide 6 as the liner material for type IV hydrogen storage tank[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24980-24990. |
| [14] | Naito Y, Mizoguchi K, Terada K, et al. The effect of pressure on gas permeation through semicrystalline polymers above the glass transition temperature[J]. Journal of Polymer Science Part B: Polymer Physics, 1991, 29(4): 457-462. |
| [15] | Dong C, Liu Y, Li J, et al. Hydrogen Permeability of Polyamide 6 Used as Liner Material for Type IV On-Board Hydrogen Storage Cylinders[J]. Polymers, 2023, 15(18):3715. |
| [16] | Fujiwara H, Ono H, Ohyama K, et al. Hydrogen permeation under high pressure conditions and the destruction of exposed polyethylene-property of polymeric materials for high-pressure hydrogen devices (2)-[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11832-11848. |
| [17] | Wang X L, Tian M M, Chen X D, et al. Advances on materials design and manufacture technology of plastic liner of type Ⅳ hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8382-8408. |
| [18] | Duncan T V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors[J]. Journal of Colloid and Interface Science, 2011, 363(1): 1-24. |
| [19] | Kunz D A, Schmid J, Feicht P, et al. Clay-based nanocomposite coating for flexible optoelectronics applying commercial polymers[J]. ACS Nano, 2013, 7(5): 4275-4280. |
| [20] | DeRocher J P, Gettelfinger B T, Wang J S, et al. Barrier membranes with different sizes of aligned flakes[J]. Journal of Membrane Science, 2005, 254(1/2): 21-30. |
| [21] | Flaconneche B, Martin J, Klopffer M H. Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly (vinylidene fluoride)[J]. Oil & Gas Science and Technology, 56(3): 261-278. |
| [22] | 熊耀强, 吴平, 赵建平. Ⅳ型储氢气瓶内衬材料的氢渗透行为分子动力学模拟[J]. 压力容器, 2023, 40(7): 19-28. |
| Xiong Y Q, Wu P, Zhao J P. Molecular dynamics simulations on hydrogen permeation of modified polymer liner for type Ⅳ storage vessels[J]. Pressure Vessel Technology, 2023, 40(7): 19-28. | |
| [23] | Kamiya Y, Naito Y, Terada K, et al. Volumetric properties and interaction parameters of dissolved gases in poly(dimethylsiloxane) and polyethylene[J]. Macromolecules, 2000, 33(8): 3111-3119. |
| [24] | Boyd R H, Pant P K. Molecular packing and diffusion in polyisobutylene[J]. Macromolecules, 1991, 24(23): 6325-6331. |
| [25] | 李兰艳, 李光吉, 李超, 等. 尼龙6在热氧老化中的性能与结构变化[J]. 塑料科技, 2009, 37(12): 36-41. |
| Li L Y, Li G J, Li C, et al. Changes in the properties and structures of PA6 during the course of thermal-oxidative aging[J]. Plastics Science and Technology, 2009, 37(12): 36-41. | |
| [26] | Zhao X W, Li X H, Ye L, et al. Stress–thermooxidative aging behavior of polyamide 6[J]. Journal of applied polymer science, 2013, 129(3): 1193-1201. |
| [27] | 陈琛, 韩燚, 孙海燕, 等. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(1):47-55. |
| Chen C, Han Y, Sun H Y, et al. Flower-shaped graphene oxide in situ unfolding polyamide-6 and functional fibers thereof[J]. Journal of Textile Research, 2023, 44(1): 47-55. | |
| [28] | 何曼君, 张红东, 陈维孝, 等. 高分子物理第三版[M]. 上海: 复旦大学出版社, 2008. |
| He M J, Zhang H D, Chen W X, et al. Polymer Physics Third edition[M]. Shanghai: Fudan University Press, 2008. | |
| [29] | Mozaffari F, Eslami H, Moghadasi J. Molecular dynamics simulation of diffusion and permeation of gases in polystyrene[J]. Polymer, 2010, 51(1): 300-307. |
| [30] | 李顺阳. 储氢气瓶内衬异质界面连接强度和氢透性分子模拟[D]. 太原: 太原科技大学, 2023. |
| Li S Y. Molecular simulation of bonding strength and hydrogen permeability of heterogeneous interface in hydrogen storage bottle lining[D]. Taiyuan: Taiyuan University of Science and Technology, 2023. | |
| [31] | 王蓓娣. 氧化石墨烯的功能化改性及应用研究[D]. 上海: 复旦大学, 2012. |
| Wang B D. Study on functional modification and application of graphene oxide[D]. Shanghai: Fudan University, 2012. | |
| [32] | 张学敏, 翟丽珍, 李厚补, 等. Ⅳ型储氢气瓶内衬材料聚酰胺6氢渗透行为的分子模拟研究[J]. 中国塑料, 2024, 38(8): 62-68. |
| Zhang X M, Zhai L Z, Li H B, et al. Molecular simulation of hydrogen permeation behavior of polyamide 6 liner material for type Ⅳ hydrogen storage cylinder[J]. China Plastics, 2024, 38(8): 62-68. | |
| [33] | Xiang J H, Zeng F G, Liang H Z, et al. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J]. Science China Earth Sciences, 2014, 57(8): 1749-1759. |
| [34] | Yi Y, Bi P, Zhao X F, et al. Molecular dynamics simulation of diffusion of hydrogen and its isotopic molecule in polystyrene[J]. Journal of Polymer Research, 2018, 25(2): 43. |
| [1] | 吴馨, 龚建英, 李祥宇, 王宇涛, 杨小龙, 蒋震. 超声波激励疏水表面液滴运动的实验研究[J]. 化工学报, 2025, 76(S1): 133-139. |
| [2] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [3] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [4] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [5] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [6] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [7] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [8] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [9] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [10] | 刘峰, 韩春硕, 张益, 刘彦成, 郁林军, 申家伟, 高晓泉, 杨凯. 高温高盐环境下单烃链和双烃链表面活性剂对油水界面性质影响的微观机理研究[J]. 化工学报, 2025, 76(6): 2939-2957. |
| [11] | 包兴, 郭雪岩. 圆柱颗粒结构修饰对填充床内流动和换热特性的影响[J]. 化工学报, 2025, 76(6): 2603-2615. |
| [12] | 赵清萍, 张敏, 赵辉, 王刚, 邱永福. 乙烯氢甲酯化合成丙酸甲酯的氢键作用机制及反应动力学研究[J]. 化工学报, 2025, 76(6): 2701-2713. |
| [13] | 向晓彤, 段旭东, 王斯民. 多目标优化驱动的PEM电解槽性能研究[J]. 化工学报, 2025, 76(6): 2626-2637. |
| [14] | 麦棹铭, 武颖韬, 王维, 穆海宝, 黄佐华, 汤成龙. 正十二烷-甲烷双燃料非线性着火特性及稀释气体效应研究[J]. 化工学报, 2025, 76(6): 3115-3124. |
| [15] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号