化工学报 ›› 2025, Vol. 76 ›› Issue (11): 6040-6057.DOI: 10.11949/0438-1157.20250623

• 能源和环境工程 • 上一篇    下一篇

煅烧电石渣强化生物质气化制氢特性及其反应动力学研究

邹立1(), 马砺1(), 张鹏宇1, 魏高明1(), 郭睿智1, 赵钦新2   

  1. 1.西安科技大学安全科学与工程学院,陕西 西安 710054
    2.西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2025-06-10 修回日期:2025-08-29 出版日期:2025-11-25 发布日期:2025-12-19
  • 通讯作者: 马砺,魏高明
  • 作者简介:邹立(1995—),男,博士,讲师,15594803880@163.com
  • 基金资助:
    国家自然科学基金项目(52174206);创新人才推进计划-科技创新团队项目(2023-CX-TD-42)

Hydrogen production performance and reaction kinetics of biomass gasification enhanced by calcined carbide slag

Li ZOU1(), Li MA1(), Pengyu ZHANG1, Gaoming WEI1(), Ruizhi GUO1, Qinxin ZHAO2   

  1. 1.School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    2.Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2025-06-10 Revised:2025-08-29 Online:2025-11-25 Published:2025-12-19
  • Contact: Li MA, Gaoming WEI

摘要:

钙循环生物质化学链气化(CaL-BCLG)技术通过CaO基吸收剂原位捕集CO2以实现高纯H2制取与碳减排的协同目标,在清洁能源领域具有广阔前景。但吸附剂在高温循环中的烧结失活问题严重制约其工业化应用。以煅烧电石渣(CCS)为CaO前体,采用湿混-煅烧法制备了一系列掺杂惰性氧化物的改性吸附剂。结合XRD SEM、BET、STA等表征手段、大样品量热重装置及CaL-BCLG平台,系统研究了掺杂剂类型对吸附剂物化特性和CO2吸附性能的影响,并评估了掺杂改性对生物质循环制氢能力和气化动力学行为的作用机制。结果表明,CCS在初始反应中具有较高的碳酸化转化率,但烧结导致其性能显著下降。CCS-Si2吸附剂(CCS∶SiO₂=98∶2)在20次循环反应中展现出最优性能,平均最大CO2吸附量和碳酸化转化率分别达到0.32 g·gsor-1和47.44%。生物质气化制氢效率受吸附剂CO2捕集能力和合成气在吸附剂内部的扩散效率共同影响。当CaO与碳元素摩尔比(CaO/C)<1.0或蒸汽与生物质质量比(S/B)<30时,增加吸附剂和蒸汽添加量可促进气化反应;超过该阈值则会抑制合成气扩散并破坏反应器内温度场稳定性,产生负效应。在典型工况下(温度650℃,CaO/C=1.0,S/B=30),CCS-Si2吸附剂经10次循环后的H2产率达357 ml·gbio-1,CO2产率仅为91 ml·gbio-1,显著优于纯CaO和未改性CCS。研究可为电石渣的资源化利用及CaL-BCLG工艺中吸附剂的高效稳定设计提供理论支撑。

关键词: 生物质, 化学链气化, 吸附剂, 制氢, CO2吸附, 动力学模型

Abstract:

Calcium-cycled biomass chemical chaining gasification (CaL-BCLG) technology uses CaO-based absorbents to capture CO₂ in situ, achieving the synergistic goals of high-purity H₂ production and carbon emission reduction. It holds great promise in the clean energy sector. However, the sintering-induced deactivation of sorbents during high-temperature cycling remains a major barrier to industrial application. In this study, a series of inert oxide-doped sorbents were synthesized via a wet-mixing and calcination method, using calcined carbide slag (CCS) as the CaO precursor. Comprehensive characterization, large-sample thermogravimetric analysis, and CaL-BCLG platform tests were employed to investigate the effects of dopant type on the physicochemical properties and CO2 adsorption performance of the sorbents. The effect of doping modification on biomass cyclic H2 production and gasification kinetics was also systematically evaluated. The results showed that CCS exhibited a relatively high initial carbonation conversion, but suffered significant performance degradation due to sintering. Among all samples, the CCS-Si2 sorbent (mass ratio CCS∶SiO2 = 98∶2) demonstrated the best performance, with an average maximum CO2 uptake of 0.32 g·gsor-1 and a peak carbonation conversion of 47.44% after 20 cycles. The hydrogen production efficiency of biomass gasification was jointly influenced by the CO2 capture capacity of the sorbent and the diffusion efficiency of syngas within it. When the CaO-to-carbon molar ratio (CaO/C) is below 1.0 or the steam-to-biomass mass ratio (S/B) is below 30, increasing the sorbent and steam inputs could promote the gasification reaction. However, exceeding these thresholds might hinder syngas diffusion and disrupt the temperature stability within the reactor, leading to adverse effects. Under typical conditions (temperature 650℃, CaO/C = 1.0, S/B = 30), the CCS-Si2 sorbent delivered a H2 yield of 357 ml·gbio-1 after 10 cycles, with a CO2 yield of only 91 ml·gbio-1, significantly outperforming both pure CaO and unmodified CCS. This study provides theoretical insights into the resource utilization of waste carbide slag and the development of efficient and stable sorbents for CaL-BCLG hydrogen production processes.

Key words: biomass, chemical looping gasification, sorbent, hydrogen production, CO2 adsorption, kinetic model

中图分类号: