化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3539-3551.DOI: 10.11949/0438-1157.20241342
收稿日期:2024-11-22
修回日期:2024-12-30
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
郭晓镭
作者简介:陆昕晟(1999—),男,硕士研究生,xinchengl930@163.com
Xincheng LU(
), Xiaolei GUO(
), Shicheng WANG, Haifeng LU, Haifeng LIU
Received:2024-11-22
Revised:2024-12-30
Online:2025-07-25
Published:2025-08-13
Contact:
Xiaolei GUO
摘要:
生物质气流床气化工艺中,在非烘焙状态下实现原始生物质的高效、低能耗细粉制备是提高生物质气化效率的有效途径之一。研究了五种常见秸秆(玉米、芝麻、小麦、棉花和芦苇)在不同水分含量(0.3%~15.3%)和筛网尺寸(1.0、1.5和2.0 mm)下的锤磨粉碎特性。实验结果表明,水分含量、筛网尺寸和秸秆种类对秸秆粉碎的比能耗和产物粒度影响显著。随着水分含量减少,比能耗降低43.38%~61.64%,最高可以减小至36.9 kW·h/t;同时产物粒径参数d90降低了3.87%~22.36%。相同水分下,1.0 mm筛网比能耗比2.0 mm筛网增加39.04%~169.98%。水分降低使得秸秆的抗剪强度减小12.36%~17.13%,杨氏模量增大1.74%~9.00%,从而导致粉碎机制由塑性变形向脆性断裂转变,是能耗降低的关键原因。另一方面,填充于纤维素构架中的木质素强化了秸秆的力学强度。棉花秸秆和芦苇的木质素含量约为其余三种秸秆的2倍,所以相同水分下棉花秸秆和芦苇粉碎的比能耗总是高于其他三种秸秆。以小于1 mm粒度的单位质量粉体比能耗为基准,发现2.0 mm筛网的有效比能耗Et相比于1.0 mm筛网减小21.06%~55.54%。建立了基于水分含量和粒度的比能耗预测模型,误差为±15%。
中图分类号:
陆昕晟, 郭晓镭, 王世丞, 陆海峰, 刘海峰. 秸秆类生物质的粉碎特性研究[J]. 化工学报, 2025, 76(7): 3539-3551.
Xincheng LU, Xiaolei GUO, Shicheng WANG, Haifeng LU, Haifeng LIU. Study on comminution characteristics of straw biomass[J]. CIESC Journal, 2025, 76(7): 3539-3551.
| 物料 | 纤维素/% | 半纤维素/% | 木质素/% |
|---|---|---|---|
| A | 50.72 | 25.86 | 11.11 |
| B | 45.62 | 20.88 | 12.75 |
| C | 40.32 | 33.99 | 11.94 |
| D | 43.45 | 18.77 | 23.07 |
| E | 50.43 | 21.90 | 22.29 |
表1 秸秆的组成成分(干基)
Table 1 Composition of straws on a dry basis
| 物料 | 纤维素/% | 半纤维素/% | 木质素/% |
|---|---|---|---|
| A | 50.72 | 25.86 | 11.11 |
| B | 45.62 | 20.88 | 12.75 |
| C | 40.32 | 33.99 | 11.94 |
| D | 43.45 | 18.77 | 23.07 |
| E | 50.43 | 21.90 | 22.29 |
| 物料 | 水分含量/% |
|---|---|
| A | 8.14 |
| B | 15.11 |
| C | 10.67 |
| D | 15.33 |
| E | 14.32 |
表2 实验物料的初始水分含量
Table 2 Initial moisture content of experimental materials
| 物料 | 水分含量/% |
|---|---|
| A | 8.14 |
| B | 15.11 |
| C | 10.67 |
| D | 15.33 |
| E | 14.32 |
| 物料 | d10/mm | d50/mm | d90/mm |
|---|---|---|---|
| A | 3.31 | 6.45 | 12.53 |
| B | 3.61 | 6.97 | 13.85 |
| C | 4.63 | 8.28 | 14.82 |
| D | 4.80 | 8.75 | 15.39 |
| E | 4.85 | 8.83 | 15.95 |
表3 粉碎前的粒径参数
Table 3 Particle size parameters before comminution
| 物料 | d10/mm | d50/mm | d90/mm |
|---|---|---|---|
| A | 3.31 | 6.45 | 12.53 |
| B | 3.61 | 6.97 | 13.85 |
| C | 4.63 | 8.28 | 14.82 |
| D | 4.80 | 8.75 | 15.39 |
| E | 4.85 | 8.83 | 15.95 |
| 物料 | a | b | 适用条件 | R2 |
|---|---|---|---|---|
| A | 1.74 | 6.03 | 农业秸秆 MC < 20% | 0.99 |
| B | 1.31 | 5.38 | 0.97 | |
| C | 1.29 | 7.50 | 0.99 | |
| D | 2.45 | 11.48 | 0.99 | |
| E | 2.08 | 16.66 | 0.97 |
表4 拟合参数和相关系数
Table 4 Fitting parameters and correlation coefficients
| 物料 | a | b | 适用条件 | R2 |
|---|---|---|---|---|
| A | 1.74 | 6.03 | 农业秸秆 MC < 20% | 0.99 |
| B | 1.31 | 5.38 | 0.97 | |
| C | 1.29 | 7.50 | 0.99 | |
| D | 2.45 | 11.48 | 0.99 | |
| E | 2.08 | 16.66 | 0.97 |
| [1] | Wu S L, Shen D K, Hu J, et al. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 90: 209-217. |
| [2] | Wu S L, Shen D K, Hu J, et al. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods[J]. Biomass and Bioenergy, 2016, 95: 55-63. |
| [3] | Pio D T, Tarelho L A C, Pinto P C R. Gasification-based biorefinery integration in the pulp and paper industry: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110210. |
| [4] | Calado L C, Orzáez M J H, La Cal Herrera J, et al. Techno-economic evaluation of downdraft fixed bed gasification of almond shell and husk as a process step in energy production for decentralized solutions applied in biorefinery systems[J]. Agronomy, 2023, 13(9): 2278 |
| [5] | Henrich E, Weirich F. Pressurized entrained flow gasifiers for biomass[J]. Environmental Engineering Science, 2004, 21(1): 53-64. |
| [6] | Kobayashi N, Piao G L, Kobayashi J, et al. A new pulverized biomass utilization technology[J]. Powder Technology, 2008, 180(3): 272-283. |
| [7] | Basu P. Biomass Gasification, Pyrolysis and Torrefaction[M]. 3rd ed. London: Academic Press, 2018: 263-329. |
| [8] | Luo S Y, Xiao B, Guo X J, et al. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: influence of particle size on gasification performance[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1260-1264. |
| [9] | Hernández J J, Aranda-Almansa G, Bula A. Gasification of biomass wastes in an entrained flow gasifier: effect of the particle size and the residence time[J]. Fuel Processing Technology, 2010, 91(6): 681-692. |
| [10] | Kratky L, Jirout T. Experimental identification and modelling of specific energy requirement for knife milled beech chips in dependence on particle size characteristics and moisture[J]. Energy, 2022, 243: 122749. |
| [11] | Ngamnikom P, Songsermpong S. The effects of freeze, dry, and wet grinding processes on rice flour properties and their energy consumption[J]. Journal of Food Engineering, 2011, 104(4): 632-638. |
| [12] | Miao Z, Grift T E, Hansen A C, et al. Energy requirement for comminution of biomass in relation to particle physical properties[J]. Industrial Crops and Products, 2011, 33(2): 504-513. |
| [13] | Mayer-Laigle C, Rajaonarivony R K, Blanc N, et al. Comminution of dry lignocellulosic biomass(part Ⅱ): Technologies, improvement of milling performances, and security issues[J]. Bioengineering, 2018, 5(3): 50. |
| [14] | Eisenlauer M, Teipel U. Comminution of wood—influence of process parameters[J]. Chemical Engineering & Technology, 2020, 43(5): 838-847. |
| [15] | Souček J, Hanzlíková I, Hutla P. A fine desintegration of plants suitable for composite biofuels production[J]. Research in Agricultural Engineering, 2003, 49(1): 7-11. |
| [16] | Probst K V, Ambrose R P K, Pinto R L, et al. The effect of moisture content on the grinding performance of corn and corncobs by hammermilling[J]. Transactions of the ASABE, 2013, 56(3): 1025-1033. |
| [17] | Kadhim J, Aridhee A L, Abood A M, et al. Influence of screen mesh size of hammer mill at different wheat moisture[J]. Plant Archives, 2019, 19: 1138-1141. |
| [18] | Temmerman M, Jensen P D, Hébert J. Von Rittinger theory adapted to wood chip and pellet milling, in a laboratory scale hammermill[J]. Biomass and Bioenergy, 2013, 56: 70-81. |
| [19] | Mani S, Tabil L G, Sokhansanj S. Grinding performance and physical properties of selected biomass[C]//2002 ASAE Annual Meeting. Chicago, St. Joseph, 2002. |
| [20] | Vin-Nnajiofor M C, Li W Q, Debolt S, et al. Characterization of the composition, structure, and mechanical properties of endocarp biomass[J]. Journal of the ASABE, 2022, 65(1): 67-74. |
| [21] | Manouchehrinejad M, van Giesen I, Mani S. Grindability of torrefied wood chips and wood pellets[J]. Fuel Processing Technology, 2018, 182: 45-55. |
| [22] | Repellin V, Govin A, Rolland M, et al. Energy requirement for fine grinding of torrefied wood[J]. Biomass and Bioenergy, 2010, 34(7): 923-930. |
| [23] | 丛宏斌, 姚宗路, 赵立欣, 等. 中国农作物秸秆资源分布及其产业体系与利用路径[J]. 农业工程学报, 2019, 35(22): 132-140. |
| Cong H B, Yao Z L, Zhao L X, et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 132-140. | |
| [24] | 刘俊杰, 严晓斌, 张美怡, 等. 中国农作物秸秆资源产量分布及利用分析[J]. 农业资源与环境学报, 2024, 41(6): 1-13. |
| Liu J J, Yan X B, Zhang M Y, et al. Analysis of yield distribution and utilization of crop straw resources in China[J]. Journal of Agricultural Resources and Environment, 2024, 41(6): 1-13. | |
| [25] | Wu S L, Shen D K, Hu J, et al. Role of β-O-4 glycosidic bond on thermal degradation of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 147-156. |
| [26] | Wu S L, Shen D K, Hu J, et al. TG-FTIR and Py-GC-MS analysis of a model compound of cellulose-glyceraldehyde[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 79-85. |
| [27] | Guo Z G, Chen X L, Liu H F, et al. Theoretical and experimental investigation on angle of repose of biomass-coal blends[J]. Fuel, 2014, 116: 131-139. |
| [28] | Geldart D, Abdullah E C, Hassanpour A, et al. Characterization of powder flowability using measurement of angle of repose[J]. China Particuology, 2006, 4(3/4): 104-107. |
| [29] | 裴继诚. 植物纤维化学[M]. 4版. 北京: 中国轻工业出版社, 2012: 57-159. |
| Pei J C. Lignocellulosic Chemistry[M]. 4th ed. Beijing: China Light Industry Press, 2012: 57-159. | |
| [30] | Persson S. Mechanics of Cutting Plant Material[M]. Michigan: American Society of Agricultural Engineers, 1987: 90-180. |
| [31] | 周云龙. 植物生物学[M]. 4版. 北京: 高等教育出版社, 2011: 71-88. |
| Zhou Y L. Plant Biology[M]. 4th ed. Beijing: Higher Education Press, 2011: 71-88. | |
| [32] | Guo Q, Chen X L, Liu H F. Experimental research on shape and size distribution of biomass particle[J]. Fuel, 2012, 94: 551-555. |
| [33] | 付敏. 木质生物质粉碎及规模化制粉机械设计及理论研究[D]. 哈尔滨: 东北林业大学, 2010. |
| Fu M. Design and theoretical study of wood biomass crushing and large-scale milling machinery[D]. Harbin: Northeast Forestry University, 2010. |
| [1] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [2] | 吴天灏, 叶霆威, 林延, 黄振. 生物质化学链气化原位补氢制H2/CO可控合成气[J]. 化工学报, 2025, 76(7): 3498-3508. |
| [3] | 刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497. |
| [4] | 李秋英, 花亦怀, 程昊, 张涵玮, 刘文睿, 白昊川, 王凯, 邱利民. 集成ORC系统的高效氢液化流程设计研究[J]. 化工学报, 2025, 76(7): 3651-3658. |
| [5] | 张畅, 解强, 沙雨桐, 王炳杰, 梁鼎成, 刘金昌. 低灰低硅竹炭的制备及衍生硬炭的电化学性能[J]. 化工学报, 2025, 76(6): 3073-3083. |
| [6] | 姬海燕, 刘家印, 吴海军, 何璟琳, 靳紫恒, 魏钿航, 江霞. 低温等离子体在生物质气化制氢中的应用研究进展[J]. 化工学报, 2025, 76(6): 2419-2433. |
| [7] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [8] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [9] | 张履胜, 王治红, 柳青, 李雪雯, 谭仁敏. 液-液相变吸收剂捕集二氧化碳研究进展[J]. 化工学报, 2025, 76(3): 933-950. |
| [10] | 翟紫航, 蒋杰, 李锦锦, 赵玲, 奚桢浩. 基于2,5-呋喃二甲酸的三元无规共聚酯PBSF的制备与性能[J]. 化工学报, 2025, 76(2): 868-878. |
| [11] | 李文宝, 胡锦鹏, 杜淼, 潘鹏举, 单国荣. 强韧P(SBMA-co-AAc)/SiO2复合水凝胶海洋防污减阻涂层[J]. 化工学报, 2025, 76(2): 787-796. |
| [12] | 陈弋翀, 贾星雨, 钟文宇, 施俞晖, 彭瑶, 孙嘉阳, 胡冬冬, 赵玲. 具有梯度结构的微孔热塑性聚氨酯及其性能[J]. 化工学报, 2025, 76(2): 897-908. |
| [13] | 李雨诗, 陈源, 李运堂, 彭旭东, 王冰清, 李孝禄. 新型柔性坝箔片端面气膜密封变形协调分析及性能智能优化[J]. 化工学报, 2025, 76(1): 324-334. |
| [14] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
| [15] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号