| [1] |
Reinhardt J W. Minimum performance standard for aircraft cargo compartment halon replacement fire suppression systems (2012 update) [S]. Washington, DC: Federal Aviation Administration, 2012.
|
| [2] |
Takahashi F, Katta V R, Linteris G T, et al. Combustion inhibition and enhancement of cup-burner flames by CF3Br, C2HF5, C2HF3Cl2, and C3H2F3Br[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2741-2748.
|
| [3] |
Xing H R, Lu S, Yang H, et al. Review on research progress of C6F12O as a fire extinguishing agent[J]. Fire, 2022, 5(2): 50.
|
| [4] |
Burkholder J B, Cox R A, Ravishankara A R. Atmospheric degradation of ozone depleting, their substitutes, and related species[J]. Chemical Reviews, 2015, 115(10): 3704-3759.
|
| [5] |
Babushok V I, Linteris G T, Meier O C. Combustion properties of halogenated fire suppressants[J]. Combustion and Flame, 2012, 159(12): 3569-3575.
|
| [6] |
Pagliaro J L, Linteris G T. Hydrocarbon flame inhibition by C6F12O (Novec 1230): unstretched burning velocity measurements and predictions[J]. Fire Safety Journal, 2017, 87: 10-17.
|
| [7] |
Miziolek A W, Tsang W, Herron J T. Halon Replacements[M]. Washington, D C: American Chemical Society, 1997: 1-6.
|
| [8] |
Lott J L, Christian S D, Sliepcevich C M, et al. Synergism between chemical and physical fire-suppressant agents[J]. Fire Technology, 1996, 32(3): 260-271.
|
| [9] |
Babushok V I, Noto T, Hamins A, et al. Chemical and physical influences of halogenated fire suppressants[R]. Gaithersburg, MD: NIST, 1997.
|
| [10] |
迟丽影, 米长虹, 周滨, 等. 局部应用系统在消防设计中的应用与思考[C]//中国建筑学会建筑给水排水研究分会第四届第二次全体会员大会暨学术交流会论文集(下册). 西安, 2023: 64-69.
|
|
Chi L Y, Mi C H, Zhou B, et al.Application and thinking of automatic sprinkler local application system in fire protection design[C]//Proceedings of the Second Conference of the Fourth General Meeting and Academic Exchange Conference of Building Water Supply and Drainage Research Branch, Architectural Society of China (Volume Ⅱ). Xi'an, 2023: 64-69.
|
| [11] |
周强. 全淹没细水雾灭火试验与数值仿真[D]. 哈尔滨: 哈尔滨工程大学, 2013.
|
|
Zhou Q. Total flooding water mist fire suppression testand numerical simulation[D]. Harbin: Harbin Engineering University, 2013.
|
| [12] |
Sheinson R S, Penner-Hahn J E, Indritz D.The physical and chemical action of fire suppressants[J]. Fire Safety Journal, 1989, 15(6): 437-450.
|
| [13] |
Ren X Y, Jiang Y, Xu W. Numerical investigation of the chemical and physical effects of halogenated fire suppressants addition on methane-air mixtures[J]. Journal of Fire Sciences,2016, 34(5):416-430.
|
| [14] |
Noto T, Babushok V, Hamins A, et al. Inhibition effectiveness of halogenated compounds[J]. Combustion and Flame,1998, 112(1/2): 147-160.
|
| [15] |
3 Company M. 3MTM NovecTM 1230 Fire Protection Fluid [Z]. Saint Paul, MN: 3M Company USA, 2020.
|
| [16] |
梁天水, 刘德智, 王永锦, 等. 全氟三乙胺和全氟己酮混合气体的灭火效果研究[J]. 化工学报, 2020, 71(7): 3387-3392.
|
|
Liang T S, Liu D Z, Wang Y J, et al. Study on fire extinguishing efficiency of the mixtures of C6F12O and (C2F5)3N[J]. CIESC Journal, 2020, 71(7): 3387-3392.
|
| [17] |
陈涛,卢大勇,胡成, 等. 全氟己酮灭火剂临界灭火浓度测试研究[J]. 消防科学与技术,2015, 34(9): 1210-1214.
|
|
Chen T, Lu D Y, Hu C, et al. Measurement of critical extinguishing concentration of dodecafluoro-2-methylpentan-3-one[J]. Fire Science and Technology, 2015, 34(9): 1210-1214.
|
| [18] |
Gaseous fire-extinguishing systems - physical properties and system design - Part 2: CF3I extinguishant: [S]. International Organization for Standardization, 2016.
|
| [19] |
Zhang Y F, Lin L, Jin X, et al. Fire-extinguishing effectiveness of 1-bromo-3,3,3-trifluoropropene/inert gaseous mixture evaluated by cup burner method[J]. Process Safety and Environmental Protection, 2007, 85(2): 147-152.
|
| [20] |
Hirst R, Booth K. Measurement of flame-extinguishing concentrations[J]. Fire Technology, 1977, 13(4): 296-315.
|
| [21] |
Liang T S, Bai X L, Zhang D F, et al.A comparative study of ultrafine water mist extinguishing hydrocarbon pool fires with or without potassium salts[J]. Thermal Science and Engineering Progress, 2023, 39: 101655.
|
| [22] |
李润婉. 钾盐抑制正庚烷火和乙醇火的有效性研究[D]. 郑州: 郑州大学, 2019.
|
|
Li R W. Effectiveness of potassium salts in inhibiting n-heptane fire and ethanol fire[D]. Zhengzhou: Zhengzhou University, 2019.
|
| [23] |
Marinov N M. A detailed chemical kinetic model for high temperature ethanol oxidation[J]. International Journal of Chemical Kinetics,1999, 31(3): 183-220.
|
| [24] |
Seiser R, Pitsch H, Seshadri K, et al. Extinction and autoignition of n-heptane in counterflow configuration[J]. Proceedings of the Combustion Institute, 2000, 28(2): 2029-2037.
|
| [25] |
Linteris G T, Burgess D R, Takahashi F, et al. Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements[J]. Combustion and Flame, 2012, 159(3):1016-1025.
|
| [26] |
Babushok V I, Linteris G T, Burgess D R, et al. Hydrocarbon flame inhibition by C3H2F3Br(2-BTP)[J]. Combustion and Flame, 2015, 162(4): 1104-1112.
|
| [27] |
Williams B A, L'espÉrance D M, Fleming J W. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling[J]. Combustion and Flame, 2000, 120(1/2): 160-172.
|
| [28] |
羡学磊, 董海斌, 刘连喜, 等. 全氟己酮灭火剂局部应用灭火技术研究[J]. 消防科学与技术, 2021, 40(2): 255-258.
|
|
Xian X L, Dong H B, Liu L X, et al. Study on local application fire extinguishing technology of perfluoro-2-methyl-3-pentanone[J]. Fire Science and Technology, 2021, 40(2): 255-258.
|
| [29] |
宣扬, 张磊. 充装压力对全氟己酮抑制油类火焰的影响[J]. 消防科学与技术, 2021, 40(8): 1236-1239.
|
|
Xuan Y, Zhang L. Effects on class B fire suppression under various filling pressure of FK-5-1-12[J]. Fire Science and Technology, 2021, 40(8): 1236-1239.
|
| [30] |
张磊. 全氟己酮施放条件与抑制B类火焰效果的关系研究[D]. 南京: 南京理工大学, 2015.
|
|
Zhang L. Study on the Relationship between Discharge Conditions and Class B Flame-extinguishing Effect of C.-Fluoroketone.[D]. Nanjing: Nanjing University of Science and Technology, 2015.
|
| [31] |
陈勇刚, 金建泉, 黄江, 等. 喷射压力对全氟己酮和细水雾雾化特性的影响研究[J]. 消防科学与技术, 2023, 42(11): 1523-1528.
|
|
Chen Y G, Jin J Q, Huang J, et al. Study on atomization characteristics of perfluorohexanone and water mist by injection pressure[J]. Fire Science and Technology, 2023, 42(11): 1523-1528.
|
| [32] |
刘欣, 吴洪有, 高云升, 等. 基于理论计算的全氟己酮灭火系统管网流动特性分析[J]. 消防科学与技术, 2024, 43(11): 1549-1554, 1559.
|
|
Liu X, Wu H Y, Gao Y S, et al. Analysis of flow characteristics of pipe network of perfluorophenone fire extinguishing system based on theoretical calculation[J]. Fire Science and Technology, 2024, 43(11): 1549-1554, 1559.
|
| [33] |
张华杰, 梁天水. 细水雾粒径改变对电缆火灾的影响[J]. 科学技术与工程, 2021, 21(32): 14022-14027.
|
|
Zhang H J, Liang T S. Influence of water mist particle size changes on cable fire[J]. Science Technology and Engineering, 2021, 21(32): 14022-14027.
|
| [34] |
王之媛. 低气压下全氟己酮弥散特性研究[D]. 广汉: 中国民用航空飞行学院, 2023.
|
|
Wang Z Y. Study on dispersion characteristies of perfluorohexanone under low pressure[D]. Guanghan: Civil Aviation Flight University of China, 2023.
|
| [35] |
Linteris G T, Babushok V I, Sunderland P B, et al. Unwanted combustion enhancement by C6F12O fire suppressant[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2683-2690.
|
| [36] |
Xu W, Jiang Y, Ren X Y. Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant[J]. Journal of Fire Sciences, 2016, 34(4): 289-304.
|