化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6748-6760.DOI: 10.11949/0438-1157.20250463
王煜晨1(
), 王万宗1,3(
), 张鑫1,2(
), 郭茂强1, 周晓明1, 盛利志1
收稿日期:2025-04-03
修回日期:2025-07-11
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
张鑫
作者简介:王煜晨(1999—),男,硕士研究生,a784169301@163.com基金资助:
Yuchen WANG1(
), Wanzong WANG1,3(
), Xin ZHANG1,2(
), Maoqiang GUO1, Xiaoming ZHOU1, Lizhi SHENG1
Received:2025-04-03
Revised:2025-07-11
Online:2025-12-31
Published:2026-01-23
Contact:
Xin ZHANG
摘要:
以梓树豆荚壳为碳源,KOH为活化剂,制备了分层多孔生物质碳材料(ACPSC),并通过改变KOH的比例对多孔碳孔结构及性能进行调控。结构表征和性能测试结果表明:当梓树豆荚壳与KOH质量比为1∶1时获得ACPSC-1∶1样品表现出最优的比表面积(1140.8 m2·g-1)和电化学性能(在1 A·g-1电流密度下,比容量为271 F·g-1);在13 mg·cm-2的高负载下,ACPSC-1∶1的质量比容量和面积比容量分别为125 F·g-1和1392.3 mF·cm-2。组装的对称超级电容器,在664 W·kg-1的功率密度下表现出7.84 Wh·kg-1的能量密度,即使在12.9 kW·kg-1的超高功率密度下,能量密度仍高达6.07 Wh·kg-1,充分展现了其在高功率、高负载超级电容器中的应用潜力。
中图分类号:
王煜晨, 王万宗, 张鑫, 郭茂强, 周晓明, 盛利志. 高负载梓树豆荚壳衍生多孔碳材料的电化学性能研究[J]. 化工学报, 2025, 76(12): 6748-6760.
Yuchen WANG, Wanzong WANG, Xin ZHANG, Maoqiang GUO, Xiaoming ZHOU, Lizhi SHENG. Electrochemical performance of high-mass-loading porous carbons derived from catalpa pod shells[J]. CIESC Journal, 2025, 76(12): 6748-6760.
图1 (a)CPSC;(b)ACPSC-1∶1;(c)ACPSC-2∶1;(d)ACPSC-1∶2的SEM图像;(e)~(h)ACPSC-1∶1 的元素映射谱图
Fig.1 SEM images of (a) CPSC, (b) ACPSC-1∶1, (c) ACPSC-2∶1, (d) ACPSC-1∶2; (e)~(h) Element mapping spectrum of ACPSC-1∶1
图4 CPSC和ACPSC-X系列样品的(a)N2吸附-脱附等温线和(b)孔径分布
Fig.4 (a) N2 adsorption and desorption isotherms and (b) pore size distributions of CPSC and ACPSC-X series samples
图5 (a)不同样品的XPS全谱图;(b)ACPSC-1∶1的C 1s;(c)O 1s;(d)N 1s高分辨XPS谱图
Fig.5 (a) Full XPS spectra of different samples; (b) ACPSC-1∶1 C 1s; (c) O 1s; (d) High-resolution XPS spectra of N 1s
图6 CPSC和ACPSC- X系列样品(a)在100 mV·s-1扫描速率下的CV曲线;(b)在1 A·g-1电流密度下的GCD曲线
Fig.6 (a) CV curves of CPSC and ACPSC- X series samples at a scanning rate of 100 mV·s-1; (b) The GCD curves at current density of 1 A·g-1
图7 (a)ACPSC-1∶1的CV曲线;(b)充放电电流与扫描速率的函数关系图;(c)GCD曲线和(d)不同样品在不同电流密度下的比容量
Fig.7 (a) CV curve of ACPSC-1∶1; (b) Functional relationship graph of charge and discharge current and scanning rate; (c) GCD curve and (d) specific capacitance of different samples at different current densities
图8 CPSC和ACPSC- X系列样品的(a)EIS曲线;(b)电荷转移电阻值;(c)频率响应;(d)弛豫时间
Fig.8 (a) EIS curves; (b) charge transfer resistance values; (c) frequency response; (d) relaxation time of CPSC and ACPSC- X series samples
| Sample | Rs/Ω | Rct/Ω | WO-R | WO-T | WO-P |
|---|---|---|---|---|---|
| CPSC | 0.25 | 0.203 | 0.822 | 0.048 | 0.443 |
| ACPSC-2∶1 | 0.178 | 0.096 | 0.479 | 0.053 | 0.463 |
| ACPSC-1∶1 | 0.142 | 0.046 | 0.373 | 0.039 | 0.472 |
| ACPSC-1∶2 | 0.163 | 0.059 | 0.42 | 0.049 | 0.469 |
表1 CPSC与ACPSC-X系列样品阻抗拟合值
Table 1 Impedance fitting values of CPSC and ACPSC-X series samples
| Sample | Rs/Ω | Rct/Ω | WO-R | WO-T | WO-P |
|---|---|---|---|---|---|
| CPSC | 0.25 | 0.203 | 0.822 | 0.048 | 0.443 |
| ACPSC-2∶1 | 0.178 | 0.096 | 0.479 | 0.053 | 0.463 |
| ACPSC-1∶1 | 0.142 | 0.046 | 0.373 | 0.039 | 0.472 |
| ACPSC-1∶2 | 0.163 | 0.059 | 0.42 | 0.049 | 0.469 |
图10 ACPSC-1∶1负载为13 mg·cm-2的(a)CV曲线;(b)GCD曲线;在不同负载量下的(c)质量比容量和(d)面积比容量
Fig.10 (a) CV curve; (b) GCD curve of ACPSC-1∶1 loading at 13 mg·cm-2; (c) specific capacitance and (d) area-to-capacitance of different mass loading capacities
| 电极 | 质量负载/(mg·cm-2) | 1 A·g-1电流密度下电化学性能/(F·g-1) | 文献 |
|---|---|---|---|
| MGC-700 | 13 | 110 | [ |
| N,S co-doped carbon nanoflowers | 13 | 39 | [ |
| SL/W-2 | 13 | 122 | [ |
| ACPSC-1∶1 | 13 | 125 | — |
表2 ACPSC-1∶1与已报道文献中高质量负载电极电化学性能对比
Table 2 Comparison of the electrochemical performance of ACPSACPSC-1∶1 with previously reported high-mass-loading electrodes
| 电极 | 质量负载/(mg·cm-2) | 1 A·g-1电流密度下电化学性能/(F·g-1) | 文献 |
|---|---|---|---|
| MGC-700 | 13 | 110 | [ |
| N,S co-doped carbon nanoflowers | 13 | 39 | [ |
| SL/W-2 | 13 | 122 | [ |
| ACPSC-1∶1 | 13 | 125 | — |
图12 ACPSC-1∶1//ACPSC-1∶1对称超级电容器的(a)CV曲线;(b)GCD曲线;(c)Ragone图
Fig.12 (a) CV curves; (b) GCD curves; (c)Ragone plots for ACPSC-1∶1//ACPSC-1∶1 symmetric supercapacitor
| [1] | Karlilar Pata S, Pata U K, Wang Q. Ecological power of energy storage, clean fuel innovation, and energy-related research and development technologies[J]. Renewable Energy, 2025, 241: 122377. |
| [2] | An T C, Cheng W L. Recent progress in stretchable supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(32): 15478-15494. |
| [3] | 钱宇宸, 杨晓晓, 张晶晶, 等. 超级电容器电极材料的研究进展[J]. 东华大学学报(自然科学版), 2022, 48(6): 1-13. |
| Qian Y C, Yang X X, Zhang J J, et al. Research progress in electrode materials for supercapacitor[J]. Journal of Donghua University(Natural Science), 2022, 48(6): 1-13. | |
| [4] | Kumar Y A, Alagarasan J K, Ramachandran T, et al. The landscape of energy storage: insights into carbon electrode materials and future directions[J]. Journal of Energy Storage, 2024, 86: 111119. |
| [5] | Manasa P, Sambasivam S, Ran F. Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications-A review[J]. Journal of Energy Storage, 2022, 54: 105290. |
| [6] | 刘晓丽, 黄昆明, 李新. 生物炭的制备及其在能源环境领域的应用进展[J]. 化工环保, 2025, 45(1): 1-10. |
| Liu X L, Huang K M, Li X. Progress on preparation of biochar and its application in energy and environment[J]. Environmental Protection of Chemical Industry, 2025, 45(1): 1-10. | |
| [7] | Tu J F, Qiao Z J, Wang Y Z, et al. Biomass-based porous carbon for high-performance supercapacitor electrode materials prepared from Canada goldenrod[J]. Journal of Energy Storage, 2023, 73: 109268. |
| [8] | Genel İ, Yardım Y, Saka C. Green synthesis of hierarchical nitrogen-doped porous activated carbon material based on biomass waste for high-performance energy storage as supercapacitor[J]. Biomass and Bioenergy, 2025, 197: 107818. |
| [9] | Huang T Q, Chu X Y, Cai S Y, et al. Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading[J]. Energy Storage Materials, 2019, 17: 349-357. |
| [10] | Huang Z H, Song Y, Feng D Y, et al. High mass loading MnO2 with hierarchical nanostructures for supercapacitors[J]. ACS Nano, 2018, 12(4): 3557-3567. |
| [11] | Supiyeva Z, Pan X X, Abbas Q. The critical role of nanostructured carbon pores in supercapacitors[J]. Current Opinion in Electrochemistry, 2023, 39: 101249. |
| [12] | 赵尊侠, 郝晓亮, 方志刚, 等. 以梓树荚果为原料制备荧光碳量子点的研究[J]. 广州化工, 2021, 49(14): 40-42. |
| Zhao Z X, Hao X L, Fang Z G, et al. Preparation of fluorescent carbon quantum dots from catalpa sinensis[J]. Guangzhou Chemical Industry, 2021, 49(14): 40-42. | |
| [13] | Gunasekaran S S, Gopalakrishnan A, Subashchandrabose R, et al. Single step, direct pyrolysis assisted synthesis of nitrogen-doped porous carbon nanosheets derived from bamboo wood for high energy density asymmetric supercapacitor[J]. Journal of Energy Storage, 2021, 42: 103048. |
| [14] | Cao W X, Yang F Q. Supercapacitors from high fructose corn syrup-derived activated carbons[J]. Materials Today Energy, 2018, 9: 406-415. |
| [15] | Sun W, Lipka S M, Swartz C, et al. Hemp-derived activated carbons for supercapacitors[J]. Carbon, 2016, 103: 181-192. |
| [16] | Xuan C J, Peng Z K, Wang J, et al. Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors[J]. Chinese Chemical Letters, 2017, 28(12): 2227-2230. |
| [17] | Jiao S H, Yao Y T, Zhang J L, et al. Nano-flower-like porous carbon derived from soybean straw for efficient N-S co-doped supercapacitors by coupling in situ heteroatom doping with green activation method[J]. Applied Surface Science, 2023, 615: 156365. |
| [18] | Chen H X, Lu X Y, Wang H H, et al. Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy[J]. Journal of Energy Chemistry, 2020, 49: 348-357. |
| [19] | Feng T, Wang S R, Hua Y N, et al. Synthesis of biomass-derived N, O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor[J]. Journal of Energy Storage, 2021, 44: 103286. |
| [20] | Shang M G, Zhang J, Liu X C, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science, 2021, 542: 148697. |
| [21] | Chen R W, Li X S, Huang Q B, et al. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128755. |
| [22] | Lin Y, Chen Z Y, Yu C Y, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3389-3403. |
| [23] | Cheng J X, Lu Z J, Zhao X F, et al. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor[J]. Journal of Power Sources, 2021, 494: 229770. |
| [24] | Lu Z J, Liu X L, Wang T, et al. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range[J]. Journal of Colloid and Interface Science, 2023, 638: 709-718. |
| [25] | Zheng K W, Li Y Y, Zhu M, et al. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors[J]. Journal of Power Sources, 2017, 366: 270-277. |
| [26] | He S J, Chen W. Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors[J]. Journal of Power Sources, 2015, 294: 150-158. |
| [27] | Zhang X Y, Wang X Y, Jiang L L, et al. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons[J]. Journal of Power Sources, 2012, 216: 290-296. |
| [28] | Vijayakumar M, Santhosh R, Adduru J, et al. Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading[J]. Carbon, 2018, 140: 465-476. |
| [29] | Niu Y, Guo M Q, Zhang Y T, et al. Heteroatom-doped layered hierarchical porous carbon electrodes with high mass loadings for high-performance supercapacitors[J]. Journal of Energy Storage, 2023, 73: 109064. |
| [30] | Liu Y B, Huang G X, Li Y Y, et al. N—O—S Co-doped hierarchical porous carbons derived from calcium lignosulfonate for high-performance supercapacitors[J]. Energy & Fuels, 2020, 34(3): 3909-3922. |
| [31] | Chen L, Lian C, Jiang H, et al. Dual-conductive N, S Co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor[J]. Chemical Engineering Science, 2020, 217: 115496. |
| [32] | Cheng X L, Yuan J C, Hu J Q, et al. 2.5 V high-performance aqueous and semi-solid-state symmetric supercapacitors enabled by 3 m sulfolane-saturated aqueous electrolytes[J]. Energy Technology, 2022, 10(6): 2200157. |
| [33] | Lei J, Guo Q, Yin D R, et al. Bioconcentration and bioassembly of N/S Co-doped carbon with excellent stability for supercapacitors[J]. Applied Surface Science, 2019, 488: 316-325. |
| [34] | 田晓东, 陈智超, 侯建. KOH用量对煤气化细灰衍生活性炭理化性质及超级电容器性能的影响[J]. 动力工程学报, 2025, 45(1): 131-140, 164. |
| Tian X D, Chen Z C, Hou J. Effect of KOH dosage on the physicochemical properties and supercapacitor performance of coal gasification fine ash derived active carbon[J]. Journal of Chinese Society of Power Engineering, 2025, 45(1): 131-140, 164. | |
| [35] | Wang G J, Lin Z H, Jin S H, et al. Gelatin-derived honeycomb like porous carbon for high mass loading supercapacitors[J]. Journal of Energy Storage, 2022, 45: 103525. |
| [36] | Soni S, Pareek K, Jangid D K, et al. Carbon cloth-MnO2 nanotube composite for flexible supercapacitor[J]. Energy Storage, 2020, 2(6): 17561-17567. |
| [37] | Tang C H, Tang Z, Gong H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors[J]. Journal of the Electrochemical Society, 2012, 159(5): A651-A656. |
| [38] | Wang Y G, Wang Z D, Xia Y Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes[J]. Electrochimica Acta, 2005, 50(28): 5641-5646. |
| [1] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
| [2] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
| [3] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
| [4] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
| [5] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
| [6] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
| [7] | 刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297. |
| [8] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
| [9] | 任博阳, 车晓刚, 刘思宇, 王满, 韩兴华, 董婷, 杨卷. 熔融盐法制备煤基多孔碳纳米片用于钠离子电池负极[J]. 化工学报, 2022, 73(10): 4745-4753. |
| [10] | 焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877. |
| [11] | 叶珍珍, 陈鑫祺, 汪剑, 李博凡, 崔超婕, 张刚, 钱陆明, 金鹰, 骞伟中. 离子液体型超级电容器软包高温老化性能评测研究[J]. 化工学报, 2021, 72(12): 6351-6360. |
| [12] | 徐晓倩, 程俊霞, 朱亚明, 高丽娟, 赖仕全, 赵雪飞. 针状焦基电容器碳质电极材料的制备及电化学性能研究[J]. 化工学报, 2020, 71(6): 2830-2839. |
| [13] | 杨乐, 余金河, 付蓉, 谢远洋, 于畅, 邱介山. 超级电容器用solvent-in-salt型电解液的研究进展[J]. 化工学报, 2020, 71(6): 2457-2465. |
| [14] | 邹雷, 刘国强, 江苗苗, 杨则恒, 张卫新. ZIF-67衍生Co/NC多孔碳材料的改性及其电催化水氧化性能[J]. 化工学报, 2020, 71(6): 2821-2829. |
| [15] | 宗爽, 刘歆颖, 陈爱兵. 金属有机框架衍生的0维材料在超级电容器中的应用[J]. 化工学报, 2020, 71(6): 2612-2627. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号