• •
收稿日期:2025-07-10
修回日期:2025-08-27
出版日期:2025-09-23
通讯作者:
马好文
作者简介:王祯(1999—),女,硕士研究生,助理工程师,wangzhen123@petrochina.com.cn
Zhen WANG(
), Qiang ZHOU, Ruoyu LI, Ping MA, Baojie WANG, Haowen MA(
)
Received:2025-07-10
Revised:2025-08-27
Online:2025-09-23
Contact:
Haowen MA
摘要:
环氧丙烷(PO)作为一种重要的化工中间体,全球产能持续扩张,而传统合成工艺面临严峻的环保挑战。如氯醇法依赖氯气等强氧化剂且反应中会产生大量的高腐蚀性副产物及“三废”,与绿色化工理念相悖。电催化法作为一种新兴的合成工艺,原子经济性高、反应条件温和(常温常压)、工艺绿色环保,契合当前绿色化工及可持续发展的趋势,是PO绿色生产的突破性方向。综述了PO的四大合成工艺(氯醇法、共氧化法、过氧化氢氧化法及电催化法),从技术原理、工业化现状、技术瓶颈等维度系统性对比;重点探讨电催化法合成PO工艺的反应机制及规模化应用前景,为PO工业生产的绿色低碳转型提供理论支撑。
中图分类号:
王祯, 周强, 李若愚, 马萍, 王宝杰, 马好文. 丙烯环氧化合成环氧丙烷工艺进展[J]. 化工学报, DOI: 10.11949/0438-1157.20250758.
Zhen WANG, Qiang ZHOU, Ruoyu LI, Ping MA, Baojie WANG, Haowen MA. Advances in the synthesis of propylene oxide via propylene epoxidation[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250758.
| [1] | Wang B H, Guo Y K, Zhu J, et al. A review on titanosilicate-1 (TS-1) catalysts: Research progress of regulating titanium species[J]. Coordination Chemistry Reviews, 2023, 476: 214931. |
| [2] | Chernyak S A, Corda M, Dath J P, et al. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook[J]. Chemical Society Reviews, 2022, 51(18): 7994-8044. |
| [3] | Yang J M, Liu S L, Liu Y Y, et al. Review and perspectives on TS-1 catalyzed propylene epoxidation[J]. iScience, 2024, 27(3): 109064. |
| [4] | Chung M, Maalouf J H, Adams J S, et al. Direct propylene epoxidation via water activation over Pd-Pt electrocatalysts[J]. Science, 2024, 383(6678): 49-55. |
| [5] | Chemanalyst. Propylene oxide (PO) market analysis: Industry market size, capacityplant, production, efficiencyoperating, demand & supply, industriesend-user, channelscale, damandregional, tradeforeign,sharecompany, 2015-2035.[EB/OL] United States: Chemanalyst, 2025[2025-08-24]. . |
| [6] | Global S&P. Propylene oxide[EB/OL]. United States: S&P Global, 2025[2025-08-24]. . |
| [7] | 国家发展和改革委员会. 产业结构调整指导目录[Z]. 北京: 国家发展和改革委员会, 2024. |
| National Development and Reform Commission. Guideline catalog for industrial restructuring[Z]. Beijing: NDRC, 2024. | |
| [8] | 工业和信息化部, 国家发展和改革委员会, 财政部, 等. 精细化工产业创新发展实施方案(2024—2027年)[Z]. 北京: 工信部联原, 2024. |
| Ministry of Industry and Information Technology, National Development and Reform Commission, Ministry of Finance, et al. Innovation and development implementation plan for the fine chemical industry (2024–2027)[Z]. Beijing: MIIT-LY, 2024. | |
| [9] | Khatib S J, Oyama S T. Direct oxidation of propylene to propylene oxide with molecular oxygen: a review[J]. Catalysis Reviews, 2015, 57(3): 306-344. |
| [10] | Schwan J, Kleoff M, Dreyhsig G H, et al. Rethinking chlorine: essential chemical or replaceable risk?[J]. ChemSusChem, 2025, 18(13): e202402697. |
| [11] | Kawabata T, Yamada J, Koike H, et al. Trends and views in the development of technologies for propylene oxide production[J]. Sumitomo Kagaku, 2019: 1-9. |
| [12] | 郭亮生. 环氧丙烷生产及联产苯乙烯工艺技术研究[J]. 全面腐蚀控制, 2024, 38(9): 99-101+17. |
| Guo L S. Study on production and co-production of styrene from propylene oxide[J]. Total Corrosion Control, 2024, 38(9): 99-101+17. | |
| [13] | Schmidt F, Bernhard M, Morell H, et al. HPPO process technology a novel route to propylene oxide without coproducts[J]. Chimica Oggi-Chemistry Today, 2014, 32(2): 31-35. |
| [14] | 单洁, 王琪, 王全. 环氧丙烷的工艺路线及技术改造分析[J]. 天津化工, 2023, 37(1): 90-94. |
| Shan J, Wang Q, Wang Q. Process route and technical transformation of propylene oxide[J]. Tianjin Chemical Industry, 2023, 37(1): 90-94. | |
| [15] | 耿瑞, 陈涛钦, 陈洪斌. 环氧丙烷高盐皂化废水处理技术述评[J]. 化工环保, 2023, 43(1): 1-8. |
| Geng R, Chen T Q, Chen H B. Review on treatment technologies of high-salt saponification wastewater from propylene oxide production[J]. Environmental Protection of Chemical Industry, 2023, 43(1): 1-8. | |
| [16] | 李玉芳. 我国氯醇法环氧丙烷合成技术研究进展[J]. 精细与专用化学品, 2024, 32(3): 53-55. |
| Li Y F. Synthesis technology research progress of propylene oxide by chlorohydrin process in China[J]. Fine and Specialty Chemicals, 2024, 32(3): 53-55. | |
| [17] | Dao L, Grigoryeva T, Laikov A, et al. Full-scale bioreactor pretreatment of highly toxic wastewater from styrene and propylene oxide production[J]. Ecotoxicology and Environmental Safety, 2014, 108: 195-202. |
| [18] | 洪磊, 张文杰, 张建阳, 等. 高盐环氧丙烷污水提标改造工艺研究[J]. 环境保护与循环经济, 2024, 44(3): 25-29. |
| Hong L, Zhang W J, Zhang J Y, et al. Research on upgrading treatment process of high salt epoxy propane wastewater [J]. Environmental Protection and Circular Economy, 2024, 44(3): 25-29. | |
| [19] | 吕建华, 刘鹏. 一种皂化法制环氧丙烷的节能减排方法: CN119912408A[P]. 2025-05-02. |
| Lü J H, Liu P. Energy-saving and emission-reducing method for preparing epoxypropane by saponification method: CN119912408A[P]. 2025-05-02. | |
| [20] | 李岩山, 李明国, 赵明, 等. 一种减渣环保的环氧丙烷皂化反应方法: CN120289386A[P]. 2025-07-11. |
| Li Y S, Li M G, Zhao M, et al. An environmentally friendly propylene oxide saponification process with reduced residue generation: CN120289386A[P]. 2025-07-11. | |
| [21] | 马立文, 李月昌, 张媛华, 等. 一种绿色减渣的环氧丙烷生产装置和方法: CN120285909A[P]. 2025-07-11. |
| Ma L W, Li Y C, Zhang Y H, et al. A green, residue-reducing apparatus and method for propylene oxide production: CN120285909A[P]. 2025-07-11. | |
| [22] | 陈战涛. 共氧化法环氧丙烷生产工艺综述[J]. 河南化工, 2022, 39(1): 5-8. |
| Chen Z T. Summary of propylene oxide production process by co-oxidation[J]. Henan Chemical Industry, 2022, 39(1): 5-8. | |
| [23] | Hibi T, Ito S, Oku N, et al. Development of a new acetophenone hydrogenation process for propylene oxide production [J]. Sumitomo Kagaku, 2009, 2009-II: 1-7. |
| [24] | Buijink J K F, Lange J P, Bos A N R, et al. Propylene epoxidation via Shell's SMPO process: 30 years of research and operation[M]//Oyama S T. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis. Amsterdam: Elsevier, 2008: 355-371. |
| [25] | Ghanta M, Fahey D R, Busch D H, et al. Comparative economic and environmental assessments of H2O2-based and tertiary butyl hydroperoxide-based propylene oxide technologies[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(2): 268-277. |
| [26] | 薛金召, 牛小娟, 汪希领, 等. 国内环氧丙烷市场分析及技术进展[J]. 化工进展, 2015, 34(9): 3500-3506. |
| Xue J Z, Niu X J, Wang X L, et al. Market analysis and technology progress of domestic propylene oxide[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3500-3506. | |
| [27] | Russo V, Tesser R, Santacesaria E, et al. Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO process)[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1168-1178. |
| [28] | Lin M, Xia C J, Zhu B, et al. Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: a 1.0 kt/a pilot-scale study[J]. Chemical Engineering Journal, 2016, 295: 370-375. |
| [29] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
| Yang J P. PSE for feedstock consumption reduction in reaction system of HPPO plant[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. | |
| [30] | 姚晖, 井萌萌, 王闻年, 等.多级孔TS-1分子筛的有机硅烷化改性及其在烯丙基氯环氧化反应中的应用[J]. 现代化工, 2025, 45(S1): 239-244. |
| Yao H, Jing M M, Wang W N, et al. Silylation modification of hierarchical porous TS-1 molecular sieve and its application in allyl chloride epoxidation reaction[J]. Modern Chemical Industry, 2025, 45(S1): 239-244. | |
| [31] | 张永生, 杨建平. 双氧水法制备环氧丙烷催化剂开发与应用进展[J]. 石油石化绿色低碳, 2024, 9 (6): 38-43+50. |
| Zhang Y S, Yang J P. Application progress and development of HPPO catalysts[J]. Green Petroleum & Petrochemicals, 2024, 9 (6): 38-43+50. | |
| [32] | Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18. |
| [33] | Thangaraj A, Eapen M J, Sivasanker S, et al. Studies on the synthesis of titanium silicalite, TS-1[J]. Zeolites, 1992, 12(8): 943-950. |
| [34] | 刘桐, 万辉, 管国锋. 钛硅分子筛TS-1的制备工艺研究进展[J]. 化工与医药工程, 2016, 37(1): 1-4. |
| Liu T, Wan H, Guan G F. Research progress of preparation of titanium silicalite-1(TS-1) molecular sieve[J]. Chemical and Pharmaceutical Engineering, 2016, 37(1): 1-4. | |
| [35] | Wang B H, Zhu Y, Han H H, et al. Preparation and catalytic performance in propylene epoxidation of hydrophobic hierarchical porous TS-1 zeolite[J]. Catalysis Letters, 2022, 152(10): 3076-3088. |
| [36] | Wang B R, Lin M, Peng X X, et al. Hierarchical TS-1 synthesized effectively by post-modification with TPAOH and ammonium hydroxide[J]. RSC Advances, 2016, 6(51): 44963-44971. |
| [37] | Yin P Y, Nie J Y, Wen X Y, et al. Application of mixed acid-modified hollow TS-1 zeolite to vapor-phase beckman rearrangement reaction[J]. Catalysis Letters, 2024, 154(11): 6035-6048. |
| [38] | Zhang T J, Chen X X, Chen G R, et al. Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation[J]. Journal of Materials Chemistry A, 2018, 6(20): 9473-9479. |
| [39] | Xiong G, Hu D, Guo Z D, et al. An efficient titanium silicalite-1 catalyst for propylene epoxidation synthesized by a combination of aerosol-assisted hydrothermal synthesis and recrystallization[J]. Microporous and Mesoporous Materials, 2018, 268: 93-99. |
| [40] | Miao C L, Zhu Q R, Yi Y H, et al. Gas-phase epoxidation of propylene with hydrogen peroxide vapor: effect of modification with NaOH on TS-1 titanosilicate catalyst in the presence of tetra-propylammonium bromide[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11739-11749. |
| [41] | Yang D D, Wang H Y, Wang W H, et al. Nickel-modified TS-1 catalyzed the ammoximation of methyl ethyl ketone[J]. Catalysts, 2019, 9(12): 1027. |
| [42] | Liu Y J, Zhao C Y, Sun B, et al. Preparation and modification of Au/TS-1 catalyst in the direct epoxidation of propylene with H2 and O2 [J]. Applied Catalysis A: General, 2021, 624: 118329. |
| [43] | 夏长久, 于佳元, 林民, 等. 中国石化双氧水法制环氧丙烷工业开发及关键科技问题[J]. 石油炼制与化工, 2024, 55(1): 130-134. |
| Xia C J, Yu J Y, Lin M, et al. Key scientific problems and industrial development of Sinopec HPPO technology for green propylene oxide production[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 130-134. | |
| [44] | Shi Y Q, Xia Y T, Xu G T, et al. Hydrogen peroxide and applications in green hydrocarbon nitridation and oxidation[J]. Chinese Journal of Chemical Engineering, 2022, 41: 145-161. |
| [45] | 于剑昆, 张会君, 沈冲. 国内HPPO工业化技术近况[J]. 化学推进剂与高分子材料, 2020, 18(1): 1-16. |
| Yu J K, Zhang H J, Shen C. Recent situation of domestic HPPO industrialization technique[J]. Chemical Propellants & Polymeric Materials, 2020, 18(1): 1-16. | |
| [46] | 赵军. 从HPPO看环氧丙烷的持续竞争力[J]. 中国石油和化工, 2023, (9): 62-63. |
| Zhao J. Sustained competitiveness of propylene oxide: insights from HPPO[J]. China Petroleum and Chemical Industry, 2023, (9): 62-63. | |
| [47] | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207. |
| Zhang S X, Wang D Y, Cheng H Z, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207. | |
| [48] | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. |
| Zhang Z G, Kang C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. | |
| [49] | 中华人民共和国国务院新闻办公室. 中国的能源转型[R]. 北京: 中华人民共和国国务院新闻办公室, 2024. |
| The State Council Information Office of the People's Republic of China. China's Energy Transition[R]. Beijing: SCIO, 2024. | |
| [50] | 黄少中, 张娣玲. 绿电、绿证市场的发展现状、问题与趋势解析[J]. 中国电力企业管理, 2025, (10): 64-67. |
| Huang S Z, Zhang D L. Analysis on the development status, problems and trends of green electricity and green certificate market[J]. China Power Enterprise Management, 2025, (10): 64-67. | |
| [51] | 朱晟, 彭怡婷, 闵宇霖, 等. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852. |
| Zhu S, Peng Y T, Min Y L, et al. Research progress on materials and technologies for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852. | |
| [52] | Li X W, Yang C Y, Tang Z Y. Electrifying oxidation of ethylene and propylene[J]. Chemical Communications, 2024, 60(53): 6703-6716. |
| [53] | Jouny M, Hutchings G S, Jiao F. Carbon monoxide electroreduction as an emerging platform for carbon utilization[J]. Nature Catalysis, 2019, 2(12): 1062-1070. |
| [54] | Leech M C, Garcia A D, Petti A, et al. Organic electrosynthesis: from academia to industry[J]. Reaction Chemistry & Engineering, 2020, 5(6): 977-990. |
| [55] | Frontana-Uribe B A, Little R D, Ibanez J G, et al. Organic electrosynthesis: a promising green methodology in organic chemistry[J]. Green Chemistry, 2010, 12(12): 2099-2119. |
| [56] | Cardoso D S P, Šljukić B, Santos D M F, et al. Organic electrosynthesis: from laboratorial practice to industrial applications[J]. Organic Process Research & Development, 2017, 21(9): 1213-1226. |
| [57] | Chung M, Jin K, Zeng J S, et al. Mechanism of chlorine-mediated electrochemical ethylene oxidation in saline water[J]. ACS Catalysis, 2020, 10(23): 14015-14023. |
| [58] | Qi Y Y, Tuo Y X, Zhu Y R, et al. Advances in catalyst design for electrocatalytic epoxidation of olefins[J]. Chemical Engineering Science, 2025, 306: 121273. |
| [59] | 孙艺轩. 电化学合成环氧乙烷和环氧丙烷的研究进展[J]. 石油化工, 2023, 52(11): 1596-1601. |
| Sun Y X. Research progress on electrochemical synthesis of ethylene oxide and propylene oxide[J]. Petrochemical Technology, 2023, 52(11): 1596-1601. | |
| [60] | Wang J J, Wu G F, Feng G H, et al. Electrochemical epoxidation of propylene to propylene oxide via halogen-mediated systems[J]. ACS Omega, 2023, 8(49): 46569-46576. |
| [61] | Leow W R, Lum Y, Ozden A, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density[J]. Science, 2020, 368(6496): 1228-1233. |
| [62] | Schalck J, Hereijgers J, Guffens W, et al. The bromine mediated electrosynthesis of ethylene oxide from ethylene in continuous flow-through operation[J]. Chemical Engineering Journal, 2022, 446: 136750. |
| [63] | Liu X, Chen Z, Xu S X, et al. Bromide-mediated photoelectrochemical epoxidation of alkenes using water as an oxygen source with conversion efficiency and selectivity up to 100%[J]. Journal of the American Chemical Society, 2022, 144(43): 19770-19777. |
| [64] | Zhu H Q, Cai M L, Wang X Z, et al. Highly efficient electro-epoxidation of olefins coupled with bromine recycling[J]. Green Chemistry, 2025, 27(18): 5366-5375. |
| [65] | Liu X C, Wang T, Zhang Z M, et al. Reaction mechanism and selectivity tuning of propene oxidation at the electrochemical interface[J]. Journal of the American Chemical Society, 2022, 144(45): 20895-20902. |
| [66] | Zhang S K, Feng Y G, Elgazzar A, et al. Interfacial electrochemical-chemical reaction coupling for efficient olefin oxidation to glycols[J]. Joule, 2023, 7(8): 1887-1901. |
| [67] | Chi M F, Ke J W, Liu Y, et al. Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis[J]. Nature Communications, 2024, 15: 3646. |
| [68] | Zhang P, Wang T, Gong J L. Advances in electrochemical oxidation of olefins to epoxides[J]. CCS Chemistry, 2023, 5(5): 1028-1042. |
| [69] | Liu X C, Yao W K, Su B Y, et al. Efficient conversion of propylene to propylene glycol by coupling H2O2 electrosynthesis and TS-1 thermocatalysis[J]. Electrochemistry Communications, 2023, 151: 107510. |
| [70] | Lewis R J, Hutchings G J. Selective oxidation using in situ-generated hydrogen peroxide[J]. Accounts of Chemical Research, 2024, 57(1): 106-119. |
| [71] | Zimmer A, Mönter D, Reschetilowski W. Catalytic epoxidation with electrochemically in situ generated hydrogen peroxide[J]. Journal of Applied Electrochemistry, 2003, 33(10): 933-937. |
| [72] | Ko M, Kim Y, Woo J, et al. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system[J]. Nature Catalysis, 2022, 5(1): 37-44. |
| [73] | Hu X, Jiang H, Chen R R, et al. Breaking the scaling relationship in two-electron water oxidation via designing dual active centers for efficient H2O2 electrosynthesis[J]. ACS Catalysis, 2025, 15(10): 8403-8413. |
| [74] | Dong L Y, Guan M H, Ren Y Q, et al. Mesoporous Fe-doped carbon electrocatalysts with highly exposed active sites for efficient synthesis of hydrogen peroxide and tandem epoxidation of propene[J]. Renewables, 2023, 1(5): 562-571. |
| [75] | Guan M H, Dong L Y, Wu T, et al. Boosting selective oxidation of ethylene to ethylene glycol assisted by in situ generated H2O2 from O2 electroreduction[J]. Angewandte Chemie International Edition, 2023, 62(19): e202302466. |
| [76] | Chen H J, Cai M L, Shao J B, et al. A tandem electro-thermocatalysis platform for practical hydrogen peroxide-mediated oxygenation reactions at high rates[J]. AIChE Journal, 2025, 71(10): e18930. |
| [77] | Yilmaz T, Qiao Y, Chorkendorff I, et al. Direct electrocatalytic propylene epoxidation on PdOx and PtOx[J]. The Journal of Physical Chemistry C, 2024, 128(40): 17006-17012. |
| [78] | Sibal A P, Ghosh R, Flaherty D W, et al. Setting benchmarks for ethylene and propylene oxidation via electrochemical routes: a process design and technoeconomic analysis approach[J]. Green Chemistry, 2024, 26(17): 9455-9475. |
| [79] | Fan L, Bai X W, Xia C, et al. CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide[J]. Nature Communications, 2022, 13: 2668. |
| [80] | Xia C, Xia Y, Zhu P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462): 226-231. |
| [81] | Winiwarter A, Silvioli L, Scott S B, et al. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium[J]. Energy & Environmental Science, 2019, 12(3): 1055-1067. |
| [82] | Iguchi S, Kataoka M, Hoshino R, et al. Direct epoxidation of propylene with water at a PtOx anode using a solid-polymer-electrolyte electrolysis cell[J]. Catalysis Science & Technology, 2022, 12(2): 469-473. |
| [83] | Ke J W, Zhao J K, Chi M F, et al. Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals[J]. Nature Communications, 2022, 13: 932. |
| [84] | Li D Y, Sun P P, Zhang D, et al. Unraveling the potential-dependent selectivity of propylene electrooxidation: the role of electrochemistry-induced reconstruction[J]. Journal of the American Chemical Society, 2025, 147(28): 24900-24912. |
| [85] | Lin Y, Li H, Miao X D, et al. V activated electro-epoxidation catalyst in membrane electrode assembly system for the production of propylene oxide[J]. Nature Communications, 2025, 16: 3113. |
| [86] | Liu W, Xiang Y S, Li R Y, et al. Sustainable electrosynthesis of ethylene oxide via water-oxidation intermediates on PdAg alloy catalysts[J]. Journal of Alloys and Compounds, 2025, 1033: 181219. |
| [87] | Yun T G, Chen B Q, Wells S, et al. Extrinsic and intrinsic factors governing the electrochemical oxidation of propylene in aqueous solutions[J]. Journal of the American Chemical Society, 2025, 147(14): 12318-12330. |
| [88] | Jong R P H, Dubbelman E, Mul G. Electro-oxidation of propylene by palladium functionalized titanium hollow fibre electrodes[J]. Journal of Catalysis, 2022, 416: 18-28. |
| [89] | 王弘毅, 刘佳畅, 张鹏, 等. 电催化烯烃环氧化研究进展[J/OL]. 化工进展, 2025: 1-15. (2025-07-30). . |
| Wang H Y, Liu J C, Zhang P, et al. Recent advances in electrocatalytic olefin epoxidation[J/OL]. Chemical Industry and Engineering Progress, 2025: 1-15. (2025-07-30). . | |
| [90] | Perry S C, de León C P, Walsh F C. Review—the design, performance and continuing development of electrochemical reactors for clean electrosynthesis[J]. Journal of The Electrochemical Society, 2020, 167(15): 155525. |
| [91] | Ferreira R B, Falcão D S, Oliveira V B, et al. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment[J]. Electrochimica Acta, 2017, 224: 337-345. |
| [92] | Manso A P, Marzo F F, Barranco J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15256-15287. |
| [93] | Wen Y C, Zhang T, Wang J Y, et al. Electrochemical reactors for continuous decentralized H2O2 production[J]. Angewandte Chemie International Edition, 2022, 61(35): e202205972. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [5] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [6] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [7] | 罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833. |
| [8] | 廖兵, 祝鑫宇, 黄倩倩, 胥雯, 寇梦瑶, 郭娜. 盐酸羟胺强化芬顿体系在近中性条件下去除2,4-DCP的性能及机理研究[J]. 化工学报, 2025, 76(8): 4273-4283. |
| [9] | 刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118. |
| [10] | 周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051. |
| [11] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [12] | 吴鹂霄, 燕溪溪, 张素娜, 徐一鸣, 钱佳颖, 乔永民, 王利军. 磷掺杂微晶石墨的制备及其在锂离子电池负极材料中的电化学性能研究[J]. 化工学报, 2025, 76(7): 3615-3625. |
| [13] | 董泽明, 娄聚伟, 王楠, 陈良奇, 王江峰, 赵攀. 含余热回收的超临界压缩二氧化碳储能系统热力学特性研究[J]. 化工学报, 2025, 76(7): 3477-3486. |
| [14] | 范振宁, 梁海宁, 房茂立, 赫一凡, 于帅, 闫兴清, 安佳然, 乔帆帆, 喻健良. CO2管道不同相态节流放空特性研究与对比[J]. 化工学报, 2025, 76(7): 3742-3751. |
| [15] | 刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号