化工学报

• •    

基于自驱射流装置的强化池沸腾换热研究

苏泽世(), 高明(), 左启荣, 董无含   

  1. 上海理工大学能源与动力工程学院,上海 200093
  • 收稿日期:2025-09-16 修回日期:2025-10-11 出版日期:2025-12-12
  • 通讯作者: 高明
  • 作者简介:苏泽世(2001--),男,硕士研究生, suzeshi123@163.com
  • 基金资助:
    国家自然科学基金项目(51976127);上海市自然科学基金项目(25ZR1401261)

Study on enhanced pool boiling heat transfer based on self-driven jet device

Zeshi SU(), Ming GAO(), Qirong ZUO, Wuhan DONG   

  1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2025-09-16 Revised:2025-10-11 Online:2025-12-12
  • Contact: Ming GAO

摘要:

随着高功耗芯片热通量持续攀升,传统两相浸没式液冷因介电液体气膜易覆盖、补液易受阻而产生临界热通量(qCHF)低、过冲大等问题。本文提出一种易于通过阵列排布扩展至更大面积的自驱射流装置,利用导流管-射流孔板耦合结构在40 mm×40 mm光滑表面上实现气液分离与局部射流冲击,系统研究了导流管内径、长度、射流孔宽度及射流距离对池沸腾性能的影响。实验以低GWP介电工质Noah 2100A为工质,采用可视化与多参数同步测量,结果表明:此装置使qCHF与最大核态沸腾传热系数 hMNB 分别最高提升77.5%与68.3%;减小导流管内径、增大射流孔宽度、适度延长管长或选择最优射流距离均可显著强化换热,但各参数均存在边际效应;强化机理归因于重力压差驱动的气液分离、补液流量增加及射流冲击抑制气膜覆盖。本研究为数据中心等大尺寸芯片的两相浸没式冷却提供了高可靠、易扩展的自驱强化方案。

关键词: 传热, 相变, 多相流, 池沸腾, 自驱射流, 电子散热

Abstract:

With the continuous increase in high-power chip heat fluxes, traditional two-phase immersion liquid cooling suffers from low critical heat flux (qCHF) and large temperature overshoot due to vapor film formation and poor liquid replenishment. This paper presents a self-driven jet device that can be readily scaled to larger areas through array configuration. The device enables gas-liquid separation and localized jet impingement on a 40 mm × 40 mm smooth surface by employing a coupled structure consisting of a guide tube and a jet orifice plate. The effects of guide tube inner diameter and length, jet orifice width, and jet distance on pool boiling performance were systematically studied. Experiments employed the low-GWP dielectric fluid Noah 2100A, adopting visualization and multi-parameter synchronous measurement. Results show the device enhances qCHF and maximum nucleate boiling heat transfer coefficient (hMNB) by up to 77.5% and 68.3%, respectively. Reducing guide tube inner diameter, increasing orifice width, moderately extending tube length, or optimizing jet distance significantly improves heat transfer, though marginal effects exist. The enhancement mechanism is attributed to gravity-driven gas-liquid separation, increased replenishment flow, and jet impingement suppressing vapor film coverage. This study provides a reliable and scalable self-driven enhancement solution for two-phase immersion cooling of large chips in data centers.

Key words: heat transfer, phase change, multiphase flow, pool boiling, self- driven jet, electronic cooling

中图分类号: