| [1] |
Liu H M, Peng J Y, Zhang X, et al. Engineering atomic Pt-N3 sites on CdS nanorods for overcoming the rate-determining organic dehydrogenation in photocatalytic coproduction of H2 and value-added chemicals[J]. Chemical Engineering Journal, 2025, 504: 158618.
|
| [2] |
宋粉红, 王文光, 郭亮, 等. C元素修饰g-C3N4对TiO2的调控及复合材料光催化产氢性能研究[J]. 化工学报, 2025, 76(6): 2983-2994.
|
|
Song F H, Wang W G, Guo L, et al. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites[J]. CIESC Journal, 2025, 76(6): 2983-2994.
|
| [3] |
Yuan C Y, Yin H F, Li J, et al. Light-induced CoOx surface reconstruction in hollow heterostructure for durable photocatalytic seawater splitting[J]. Nature Communications, 2025, 16: 6607.
|
| [4] |
Li H J, Zhou Z D, Cao X H, et al. Fabrication and performance of 3C–SiC photocathode materials for water splitting[J]. Progress in Natural Science: Materials International, 2024, 34(1): 12-25.
|
| [5] |
Yao S M, Wang D H, Li J H, et al.Gas sensing activity and mechanism of Aurivillius-type Bi2MoO6 nanosheets with different crystal facets[J]. Sensors and Actuators B: Chemical, 2024, 418: 136290.
|
| [6] |
Wang G A, Huo T T, Deng Q H, et al. Surface-layer bromine doping enhanced generation of surface oxygen vacancies in bismuth molybdate for efficient photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2022, 310: 121319.
|
| [7] |
Phuruangrat A, Buapoon S, Bunluesak T, et al. Degradation of rhodamine B photocatalyzed by hydrothermally prepared Pd-doped Bi2MoO6 nanoplates[J]. Journal of the Australian Ceramic Society, 2022, 58(1): 71-82.
|
| [8] |
Pinchujit S, Phuruangrat A, Wannapop S, et al. Sonochemical-assisted synthesis of Pt/Bi2MoO6 nanocomposites for efficient photodegradation of rhodamine B[J]. Optical Materials, 2023, 135: 113265.
|
| [9] |
李晓萍, 李跃军, 曹铁平, 等. 简易合成Bi/Bi2MoO6/TiO2复合纳米纤维及其增强的可见光催化性能[J]. 无机材料学报, 2019, 34(11): 1193-1199.
|
|
Li X P, Li Y J, Cao T P, et al. Facile synthesis of Bi/Bi2MoO6/TiO2 composite nanofibers with enhanced photocatalytic activity under visible light[J]. Journal of Inorganic Materials, 2019, 34(11): 1193-1199.
|
| [10] |
Li Y J, Cao T P, Mei Z M, et al. Separating type I heterojunction of NaBi(MoO4)2/Bi2MoO6 by TiO2 nanofibers for enhanced visible-photocatalysis[J]. Chemical Physics, 2020, 533: 110696.
|
| [11] |
李跃军, 曹铁平, 梅泽民, 等. Pr掺杂Bi2MoO6/TiO2复合纳米纤维的制备及可见光催化性能[J]. 高等学校化学学报, 2017, 38(12): 2313-2319.
|
|
Li Y J, Cao T P, Mei Z M, et al. Preparation and photocatalytic properties of Pr-doped Bi2MoO6/TiO2 composite nanofibers under visible light irradiation[J]. Chinese Journal of Chemistry, 2017, 38(12): 2313-2319.
|
| [12] |
Adhikari S, Lee H H, Kim D H. Efficient visible-light induced electron-transfer in z-scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123504.
|
| [13] |
Wei Y C, Zhang Q Q, Zhou Y, et al. Noble-metal-free plasmonic MoO3-x-based S-scheme heterojunction for photocatalytic dehydrogenation of benzyl alcohol to storable H2 fuel and benzaldehyde[J]. Chinese Journal of Catalysis, 2022, 43(10): 2665-2677.
|
| [14] |
Zou X W, Sun B, Wang L, et al. Enhanced photocatalytic degradation of tetracycline by SnS2/Bi2MoO6-x heterojunction: Multi-electric field modulation through oxygen vacancies and Z-scheme charge transfer[J]. Chemical Engineering Journal, 2024, 482: 148818.
|
| [15] |
Sun Z L, Yang X L, Yu X F, et al. Surface oxygen vacancies of Pd/Bi2MoO6-x acts as "Electron Bridge" to promote photocatalytic selective oxidation of alcohol[J]. Applied Catalysis B: Environmental, 2021, 285: 119790.
|
| [16] |
霍彦廷,舒庆. 双Z型异质结BiOI/MoO3/g-C3N4的构建及其光催化性能研究[J]. 有色金属科学与工程, 2023, 14(1): 74-85.
|
|
Huo Y T, Shu Q. Construction of double Z-scheme heterojunction BiOI/MoO3/g-C3N4 and its photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 74-85.
|
| [17] |
Zhang J L, Zhang L S, Yu N, et al. Flower-like Bi2S3/Bi2MoO6 heterojunction superstructures with enhanced visible-light-driven photocatalytic activity[J]. RSC Advances, 2015, 5(92): 75081-75088.
|
| [18] |
李红英, 龚海明, 靳治良. In2O3修饰三维纳米花 MoSx构建S型异质结用于高效光催化产氢[J]. 物理化学学报, 2022, 38(12): 232-241.
|
|
Li H Y, Gong H M, Jin Z L. In2O3-Modified Three-dimensional nanoflower MoSx form S-scheme heterojunction for efficient hydrogen production[J], Acta Physico-Chimica Sinica, 2022, 38(12): 232-241.
|
| [19] |
Panda S R, Singh R K, Priyadarshini B, et al. Nanoceria: a rare-earth nanoparticle as a promising anti-cancer therapeutic agent in colon cancer[J]. Materials Science in Semiconductor Processing, 2019, 104: 104669.
|
| [20] |
Chen Y R, Liu L, Zhang L, et al. Construction of Z-type heterojunction BiVO4/Sm/α-Fe2O3 photoanode for selective degradation: efficient removal of bisphenol A based on multifunctional Sm-doped modification[J]. Applied Catalysis B: Environment and Energy, 2023, 333: 122775.
|
| [21] |
Takahashi H, Okazaki R, Terasaki I, et al. Origin of the energy gap in the narrow-gap semiconductor FeSb2 revealed by high-pressure magnetotransport measurements[J]. Physical Review B, 2013, 88(16): 165205.
|
| [22] |
Gao Z, Shi L L, Yan F, et al. Two-dimensional supramolecular polymers based on selectively recognized aromatic cation-π and donor-acceptor motifs for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2023, 62(21): e202302274.
|
| [23] |
Qi J Q, Suo W Q, Liu J, et al. Direct observation of all open-shell Intermediates in a photocatalytic cycle[J]. Journal of the American Chemical Society, 2024, 146(11): 7140-7145.
|
| [24] |
Pan R L, Ge X, Liu Q, et al. Synergic delocalized-conjugate and electron-deficient effect and mesoporous channel promote photocatalytic coupling H2 evolution with benzyl-alcohol oxidation[J]. Advanced Functional Materials, 2024, 34(17): 2315212.
|
| [25] |
Qiao X Q, Li C, Chen W X, et al. Optimization of Schottky barrier height and LSPR effect by dual defect induced work function changes for efficient solar-driven hydrogen production[J]. Chemical Engineering Journal, 2024, 490: 151822.
|
| [26] |
Zhang L Y, Zhang J J, Yu J G, et al. Charge-transfer dynamics in S-scheme photocatalyst[J]. Nature Reviews Chemistry, 2025, 9(5): 328-342.
|
| [27] |
Wu Y H, Yan Y Q, Deng Y X, et al. Rational construction of S-scheme CdS quantum dots/In2O3 hollow nanotubes heterojunction for enhanced photocatalytic H2 evolution[J]. Chinese Journal of Catalysis, 2025, 70: 333-340.
|
| [28] |
Xu J, Zhang X Q, Chen X D, et al. Carbon doping regulates charge transfer paths via a type-II to S-scheme transformation to improve photocatalytic performance[J]. Inorganic Chemistry, 2024, 63(38): 17937-17945.
|
| [29] |
万俊, 宋佳芮, 范春煌, 等. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075.
|
|
Wan J, Song J R, Fan C H, et al. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution[J]. CIESC Journal, 2025, 76(3): 1064-1075.
|
| [30] |
周云龙, 叶校源, 林东尧. 在紫外光下以玉米秸秆为牺牲剂提升光催化分解水制氢[J]. 化工学报, 2019, 70(7): 2717-2726.
|
|
Zhou Y L, Ye X Y, Lin D Y. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation[J]. CIESC Journal, 2019, 70(7): 2717-2726.
|