化工学报

• •    

复合金属CuCr2O4表面CNCl水解反应机理研究

宋振超1,2,3(), 韩嘉豪3, 张凌旋3, 武越3, 李聪明1,2()   

  1. 1.太原理工大学省部共建煤基能源清洁利用国家重点实验室,山西 太原 030024
    2.太原理工大学化学与化工学院,山西 太原 030024
    3.山西新华防化装备研究院有限公司催化剂研究所,山西 太原 030000
  • 收稿日期:2025-10-10 修回日期:2025-11-16 出版日期:2025-12-15
  • 通讯作者: 李聪明
  • 作者简介:宋振超(1979—),男,硕士,13605211568@qq.com
  • 基金资助:
    山西省重点研发计划(202202090301013);太原市“双百攻关行动”2025年度“揭榜挂帅”项目(2025TYJB13)

Study on the hydrolysis reaction mechanism of CNCl on the surface of composite metal CuCr2O4

Zhenchao SONG1,2,3(), Jiahao HAN3, Lingxuan ZHANG3, Yue WU3, Congming LI1,2()   

  1. 1.State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
    2.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi China
    3.Catalyst Research Institute, Shanxi Xinhua Chemical Defense Equipment Research Institute Co. , Ltd. , Taiyuan, 030000, Shanxi China
  • Received:2025-10-10 Revised:2025-11-16 Online:2025-12-15
  • Contact: Congming LI

摘要:

该研究针对高毒性、难水解的氯化氰(CNCl)污染问题,系统探讨了尖晶石型双金属氧化物CuCr2O4表面催化CNCl水解的反应机理。基于密度泛函理论(DFT),通过构建(100)、(110)和(111)晶面的完美及氧空位缺陷模型,分析了表面稳定性、吸附特性与水解路径。研究表明,不同晶面结构与氧空位缺陷共同调控了水解路径与反应能垒,其中(110)氧空位表面展现出最优的催化协同性。研究构建了吸附能与反应能的预测模型,揭示了Cu与Cr之间的电子协同与位点互补机制是提升水解效率的关键。该工作为设计高效双金属水解催化剂提供了理论依据,该领域未来研究将侧重于实验验证及模型向其他尖晶石体系的拓展应用。

关键词: 分子模拟, 催化, 计算化学, 水解, 动力学理论

Abstract:

This study systematically investigated the reaction mechanism of the hydrolysis of highly toxic and difficult to hydrolyze cyanogen chloride (CNCl) on the surface of spinel-type bimetallic oxide CuCr2O4 catalyst. Based on density functional theory, by constructing perfect and oxygen vacancy defect models of (100), (110) and (111) crystal planes, the surface stability, adsorption characteristics and hydrolysis pathways were analyzed. Research showed that different crystal plane structures and oxygen vacancy defects jointly regulate the hydrolysis path and reaction energy barrier, among which the (110) oxygen vacancy surface exhibits the best catalytic synergy. The study established a predictive model for adsorption energy and reaction energy, revealing that the electronic cooperation and site complementarity between Cu and Cr is the key to enhancing the hydrolysis efficiency. This work provides a theoretical basis for designing efficient bimetallic hydrolysis catalysts. Future research in this field will focus on experimental verification and the expansion of the model to other spinel systems.

Key words: molecular simulation, catalysis, computational chemistry, hydrolysis, kinetic theory

中图分类号: