• •
收稿日期:2025-11-12
修回日期:2025-12-17
出版日期:2025-12-30
通讯作者:
邓建强
作者简介:赵林坤(1998—),男,博士研究生,linkun19981118@stu.xjtu.edu.cn
基金资助:
Linkun ZHAO1,2(
), Xijian GUO1,2, Jianqiang DENG1,2(
)
Received:2025-11-12
Revised:2025-12-17
Online:2025-12-30
Contact:
Jianqiang DENG
摘要:
采用膜片式压力波发生器实验研究连续压力波对横掠管束对流传热的增强效果,分析充气时间、排气时间及减压阀出口压力等参数对压力波特性和传热性能的影响,并评估其能量效益。结果表明高速气体冲击膜片所诱发的瞬态流动及其产生的水锤效应影响压力波的激励,适中排气时间能避免残余气体削弱水锤效应,充排气时间分别为20、80ms是较为合适的。压力波幅值随减压阀出口压力增加呈先增后减趋势。管束平均传热系数在150 kPa时提升较大,为50.13%。强化效果具有空间依赖性,距波源越近增强越显著,管束正面优于背面。能效分析表明,150 kPa工况下能效比达8.75,显示出良好的能量经济性与工程应用潜力。本研究为压力波在强化管束传热领域的工程应用提供了实验依据。
中图分类号:
赵林坤, 郭希键, 邓建强. 压力波强化横掠管束传热实验研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251257.
Linkun ZHAO, Xijian GUO, Jianqiang DENG. Experimental study of heat transfer enhancement by pressure waves in cross flow tube bundles[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251257.
| Pout/kPa | 100 | 150 | 200 |
|---|---|---|---|
| Nuave,s | 91.85 | 91.85 | 91.85 |
| Nuave,p | 121.42 | 137.89 | 134.41 |
| η/% | 32.19 | 50.13 | 46.34 |
| 压缩气体时间/s | 34.00 | 34.00 | 34.00 |
| 压力波持续时间/s | 401.25 | 275.00 | 216.50 |
| Q/kJ | 417.30 | 445.5 | 324.75 |
| W/kJ | 51.00 | 51.00 | 51.00 |
| EER | 8.20 | 8.75 | 6.37 |
表1 压力波强化传热能效比分析
Table 1 Energy efficiency ratio analysis of heat transfer enhancement by pressure waves
| Pout/kPa | 100 | 150 | 200 |
|---|---|---|---|
| Nuave,s | 91.85 | 91.85 | 91.85 |
| Nuave,p | 121.42 | 137.89 | 134.41 |
| η/% | 32.19 | 50.13 | 46.34 |
| 压缩气体时间/s | 34.00 | 34.00 | 34.00 |
| 压力波持续时间/s | 401.25 | 275.00 | 216.50 |
| Q/kJ | 417.30 | 445.5 | 324.75 |
| W/kJ | 51.00 | 51.00 | 51.00 |
| EER | 8.20 | 8.75 | 6.37 |
| [1] | Sadeghianjahromi A, Wang C C. Heat transfer enhancement in fin-and-tube heat exchangers–A review on different mechanisms[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110470. |
| [2] | Liu M M, Calautit J K. A parametric investigation of the heat transfer enhancement of tube bank heat exchanger with reversed trapezoidal profile fins[J]. Thermal Science and Engineering Progress, 2023, 42: 101914. |
| [3] | Zhong Y Z, Zhao J Q, Zhao L, et al. Heat transfer and flow resistance in crossflow over corrugated tube banks[J]. Energies, 2024, 17(7): 1641. |
| [4] | 张晓慧, 鹿来运, 刘丰, 等. 大型绕管式热交换器高效换热管开发及传热性能测试[J]. 石油化工设备, 2023, 52(2): 1-5. |
| Zhang X H, Lu L Y, Liu F, et al. Development of high-efficiency heat exchange tube and study on heat transfer characteristics of large wound tube heat exchanger[J]. Petro-Chemical Equipment, 2023, 52(2): 1-5. | |
| [5] | Horvat A, Mavko B. Heat transfer conditions in flow across a bundle of cylindrical and ellipsoidal tubes[J]. Numerical Heat Transfer, Part A: Applications, 2006, 49(7): 699-715. |
| [6] | Ibrahim T A, Gomaa A. Thermal performance criteria of elliptic tube bundle in crossflow[J]. International Journal of Thermal Sciences, 2009, 48(11): 2148-2158. |
| [7] | Bahaidarah H M S, Anand N K, Chen H C. A numerical study of fluid flow and heat transfer over a bank of flat tubes[J]. Numerical Heat Transfer, Part A: Applications, 2005, 48(4): 359-385. |
| [8] | Afifi A, Zawati H, Ibrahim E Z, et al. Assessment strategy for a longitudinally finned semi-circular tube bank[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106489. |
| [9] | Li S G, Zhao X Y. Experimental study and cfd simulation of heat transfer and friction factor characteristics in the crossflow tube bank[J]. Computational Thermal Sciences, 2022, 14(5): 21-46. |
| [10] | Sabir R, Khan M M, Imran M, et al. Role of transverse dimples in thermal-hydraulic performance of dimpled enhanced tubes[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106435. |
| [11] | 茹静涵, 汤松臻, 丁亮, 等. 错列丁胞管束流动与传热特性研究[J]. 低温与超导, 2025, 53(5): 78-83, 98. |
| Ru J H, Tang S Z, Ding L, et al. Study on flow and heat transfer characteristics of staggered dimple tube bundles[J]. Cryogenics & Superconductivity, 2025, 53(5): 78-83, 98. | |
| [12] | 洪凯威. 翼型涡流发生器强化翅片管式换热器换热性能的数值研究[D]. 广州: 广州大学, 2024. |
| Hong K W. Numerical study of heat transfer performance of fin-and-tube heat exchanger enhanced by airfoil-shaped vortex generators [D]. Guangzhou: Guangzhou University, 2024. | |
| [13] | Chai L, Tassou S A. A review of airside heat transfer augmentation with vortex generators on heat transfer surface[J]. Energies, 2018, 11(10): 2737. |
| [14] | Arora A, Subbarao P M V. Three-dimensional computational investigation of streamwise deployment of longitudinal vortex generators in a finned tube bank[M]//Emerging Trends in Mechanical and Industrial Engineering. Singapore: Springer Nature Singapore, 2023: 287-296. |
| [15] | 卢钰. 换热器内锥形螺旋弹性管束流致振动强化传热特性研究[D]. 淮南: 安徽理工大学, 2024. |
| Lu Y. Study of flow-induced vibration enhanced heat transfer characteristics of conical spiral elastic tube bundle in heat exchanger [D]. Huainan: Anhui University of Science & Technology, 2024. | |
| [16] | 沙浩男, 樊传路, 李亦鑫, 等. 基于大涡模拟的脉动流横掠顺排管束强化传热研究[J]. 热能动力工程, 2025, 40(9): 155-161. |
| Sha H N, Fan C L, Li Y X, et al. Study on heat transfer enhancement of pulsating flow crossing sequential tube bundle based on large eddy simulation[J]. Journal of Engineering for Thermal Energy and Power, 2025, 40(9): 155-161. | |
| [17] | Al Omari S A B, Ghazal A M, Elnajjar E, et al. Vibration-enhanced direct contact heat exchange using gallium as a solid phase change material[J]. International Communications in Heat and Mass Transfer, 2021, 120: 104990. |
| [18] | Rakpakdee W, Tuntarungsri S, Pornnattawut M, et al. Experimental evaluation of heat transfer performance of double vertical coils and shell heat exchanger with altered inlet configuration under low-frequency ultrasound[J]. Applied Thermal Engineering, 2023, 223: 120003. |
| [19] | Mongkolkitngam T, Fukuta M, Motozawa M, et al. Thermal characterization of a heating cylinder under ultrasonic effects[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121393. |
| [20] | Bayomy A M, Saghir M Z. Heat transfer characteristics of aluminum metal foam subjected to a pulsating/steady water flow: Experimental and numerical approach[J]. International Journal of Heat and Mass Transfer, 2016, 97: 318-336. |
| [21] | Yuan B, Zhang Y H, Liu L, et al. Experimental research on heat transfer enhancement and associated bubble characteristics under high-frequency reciprocating flow[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118825. |
| [22] | Ye Q H, Zhang Y H, Wei J J. A comprehensive review of pulsating flow on heat transfer enhancement[J]. Applied Thermal Engineering, 2021, 196: 117275. |
| [23] | Gong J Z, Lambert M F, Nguyen S T N, et al. Detecting thinner-walled pipe sections using a spark transient pressure wave generator[J]. Journal of Hydraulic Engineering, 2018, 144(2): 06017027. |
| [24] | Guo X J, Deng J Q, Cao Z. Study on the propagation characteristics of pressure wave generated by mechanical shock in leaking pipelines[J]. Process Safety and Environmental Protection, 2022, 164: 706-714. |
| [25] | Han H, Xue L, Fan H H, et al. Analysis of pressure wave signal generation in MPT: an integrated model and numerical simulation approach[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109871. |
| [26] | He P, Xiong J Y, Lu Z H, et al. Study of pulse wave propagation and attenuation mechanism in shale reservoirs during pulse hydraulic fracturing[J]. Arabian Journal for Science and Engineering, 2018, 43(11): 6509-6522. |
| [27] | Arshad A, Jabbal M, Yan Y Y. Synthetic jet actuators for heat transfer enhancement–A critical review[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118815. |
| [28] | Hasbullah N, Mohd Saat F A Z, Shikh Anuar F, et al. Experimental and numerical studies of one-directional and bi-directional flow conditions across tube banks heat exchanger[J]. Thermal Science and Engineering Progress, 2022, 28: 101176. |
| [29] | Fukiba K, Ota K, Harashina Y. Heat transfer enhancement of a heated cylinder with synthetic jet impingement from multiple orifices[J]. International Communications in Heat and Mass Transfer, 2018, 99: 1-6. |
| [30] | 谭钧文, 吕元伟, 张靖周, 等. 喷口直径对声激励器输入功率和膜片振动以及合成射流冲击传热的综合影响[J]. 中国科学: 技术科学, 2024, 54(12): 2347-2362. |
| Tan J W, Lyu Y W, Zhang J Z, et al. A comprehensive study on the effects of orifice diameter on power consumption and diagram vibration of an acoustic actuator and impingement heat transfer of a synthetic jet[J]. Scientia Sinica (Technologica), 2024, 54(12): 2347-2362. | |
| [31] | Yu M, Jiang G S, Jiang Y, et al. Experimental and numerical study of convective heat transfer in-line tube bundle by acoustic action[J]. Case Studies in Thermal Engineering, 2023, 44: 102869. |
| [32] | Zhao L K, Deng J Q. Numerical study on the heat transfer enhancement outside the pipe bundle under the effect of continuous pressure waves[J]. International Journal of Heat and Mass Transfer, 2023, 207: 123994. |
| [33] | Guo X J, Deng J Q, Cao Z, et al. Research on the generation and modulation of active pressure wave for pipelines leak diagnosis[J]. Measurement, 2025, 242: 116059. |
| [1] | 于宏鑫, 王宁波, 郭焱华, 邵双全. 动态蓄冰系统的板式换热器流动换热模拟研究[J]. 化工学报, 2025, 76(S1): 106-113. |
| [2] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [3] | 吴馨, 龚建英, 李祥宇, 王宇涛, 杨小龙, 蒋震. 超声波激励疏水表面液滴运动的实验研究[J]. 化工学报, 2025, 76(S1): 133-139. |
| [4] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [5] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [6] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [7] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [8] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [9] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [10] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [11] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [12] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [13] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [14] | 罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823. |
| [15] | 胡金琦, 闵春华, 李小龙, 范元鸿, 王坤. 振动叶片耦合柔性板强化流体混沌混合与传热研究[J]. 化工学报, 2025, 76(9): 4824-4837. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号