化工学报 ›› 2015, Vol. 66 ›› Issue (9): 3305-3318.DOI: 10.11949/j.issn.0438-1157.20150785
聂瑶, 丁炜, 魏子栋
收稿日期:
2015-06-01
修回日期:
2015-07-02
出版日期:
2015-09-05
发布日期:
2015-09-05
通讯作者:
魏子栋
基金资助:
国家自然科学基金项目(21436003,21306232,51272297,21276291);国家重点基础研究发展计划项目(2012CB215501)。
NIE Yao, DING Wei, WEI Zidong
Received:
2015-06-01
Revised:
2015-07-02
Online:
2015-09-05
Published:
2015-09-05
Supported by:
supported by the National Natural Science Foundation of China (21436003, 21306232, 51272297, 21276291) and the National Basic Research Program of China (2012CB215501).
摘要:
质子交换膜燃料电池(PEMFCs)目前主要催化剂为贵金属Pt基催化剂。然而,Pt价格高、储量低等问题严重阻碍了PEMFCs的商业化进程。发展低成本、高性能的氧还原催化剂是解决铂资源短缺、降低燃料电池成本、实现燃料电池商业化的关键。结合本课题组的研究工作,综述了最近几年非铂催化剂在燃料电池阴极氧还原方面的研究进展,着重探讨了新型氮掺杂碳基纳米材料的设计与制备,并概述了非铂催化剂面临的困难以及未来发展方向。
中图分类号:
聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318.
NIE Yao, DING Wei, WEI Zidong. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. CIESC Journal, 2015, 66(9): 3305-3318.
[1] | Yi Baolian(衣宝廉). Fuel Cells-Principle, Technologies and Applications (燃料电池--原理·技术·应用)[M]. Beijing: Chemical Industry Press, 2003. |
[2] | Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cell [J]. Nature, 2006, 443: 63-66. |
[3] | Xiong W, Du F, Liu Y. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction [J]. J. Am. Chem. Soc., 2010, 132: 15839-15841. |
[4] | Snyder J, Fujita T, Chen M W. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts [J]. Nat. Mater., 2010, 9: 904-907. |
[5] | Lim B, Jiang M, Cho E C. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction [J]. Science, 2009, 324: 1302-1305. |
[6] | Chen Z W, Waje M, Li W Z. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions [J]. Angew. Chem. Int. Ed., 2007, 46: 4060-4063. |
[7] | Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction [J]. Chem. Soc. Rev., 2015,44: 2168-2201. |
[8] | Jukk K, Alexeyeva N, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nanotube composites in alkaline solution [J]. Electrocatalysis, 2013, 4(1): 42-48. |
[9] | Sha Y, Yu T H, Merinov B V. Oxygen hydration mechanism for the oxygen reduction reaction at Pt and Pd fuel cell catalysts [J]. J. Phys. Chem. Lett., 2011, 2(6): 572-576. |
[10] | Antolini E. Palladium in fuel cell catalysis [J]. Energy Environ. Sci., 2009, 2(9): 915-931. |
[11] | Suo Y, Zhuang L, Lu J T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction [J]. Angew. Chem. Int. Ed., 2007, 46(16): 2862-2864. |
[12] | Wei Y C, Liu C W, Wang K W. Improvement of oxygen reduction reaction and methanol tolerance characteristics for PdCo electrocatalysts by Au alloying and CO treatment [J]. Chem. Commun., 2011, 47(43): 11927-11929. |
[13] | Shao M H, Sasaki K, Adzic R R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction [J]. J. Am. Chem. Soc., 2006, 128(11): 3526-3527. |
[14] | Xu C, Zhang Y, Wang L, Xu L, Bian X, Ma H, Ding Y. Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction [J]. Chem. Mater., 2009, 21(14): 3110-3116. |
[15] | FernaÂndez Jose L, Raghuveer Vadari, Manthiram Arumugam, Bard Allen J. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells [J]. J. Am. Chem. Soc.,2005, 127(38): 13100-13101. |
[16] | Liu Y, Xu C. Nanoporous PdTi alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability [J].ChemSusChem, 2013, 1(6): 78-84. |
[17] | Shao M, Yu T, Odell J H. Structural dependence of oxygen reduction reaction on palladium nanocrystals [J]. Chem. Commun., 2011, 47(23): 6566-6568. |
[18] | Shao M, Odell J, Humbert M. Electrocatalysis on shape-controlled palladium nanocrystals: oxygen reduction reaction and formic acid oxidation [J]. J. Phys. Chem. C, 2013, 117(8): 4172-4180. |
[19] | Zhang L, Hou F, Tan Y W. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction [J]. Chem. Commun., 2012, 48(57): 7152-7154. |
[20] | Kondo S, Nakamura M, Maki N, Hoshi N. Active sites for the oxygen reduction reaction on the low and high index planes of palladium [J]. J. Phys. Chem. C, 2009, 113(29): 12625-12628. |
[21] | Xiao L, Zhuang L, Liu Y, Lu J, Abruna H D. Activating Pd by morphology tailoring for oxygen reduction [J]. J. Am. Chem. Soc., 2009, 131(2): 602-608. |
[22] | Schalow T, Brandt B, Starr D E, Laurin M. Size-dependent oxidation mechanism of supported Pd nanoparticles [J]. Angew. Chem. Int. Ed., 2006, 45(22): 3693-3697. |
[23] | Ding W, Xia M, Wei Z, Wan L. Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction [J].Chem. Commun., 2014, 50: 6660-6663. |
[24] | Xia M R, Ding W, Wei Z D. Anchoring effect of exfoliated-montmorillonite-supported Pd catalyst for the oxygen reduction reaction [J]. J. Phys. Chem. C, 2013, 117 (20): 10581-10588. |
[25] | Jasinski R. A new fuel cell cathode catalyst [J]. Nature, 1964, 201: 1212-1213. |
[26] | Beck F. Redox mechanism of chelate-catalyzed oxygen cathode [J]. J. Appl. Electrochem., 1977, 7: 239-245. |
[27] | Yeager E. Electrocatalysts for O2 reduction [J]. Electrochim. Acta, 1984, 29(11): 1527-1537. |
[28] | Liu H, Song C, Tang Y, Zhang J. High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts [J]. Electrochim. Acta, 2007, 52(13): 4532-4538. |
[29] | Ren Qizhi(任奇志), Ma Xiaoxia(麻晓霞), Xie Xianyu(谢先宇),Yan Tao(阎陶), Ma Zifeng (马紫峰). Heat-treated metalloporphyrin compounds supported on different carbons as electrocatalyst for oxygen reduction [J]. Journal of Chemical Industry and Engineering(China)(化工学报), 2006, 57(11): 2597-2603. |
[30] | Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells [J].Science, 2009, 324: 71-74. |
[31] | Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2013, 52(1): 371-375. |
[32] | Wan Shuwei(万术伟), Zhang Jing(张靖), Deng Peng (邓棚). Research progress of non-platinum Fe/N/C and Co/N/C cathode electrocatalyst for fuel cell [J].Chinese Journal of Power Sources (电源技术), 2010, 34(10): 1087-1092. |
[33] | Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Dodelet J, Herranz J P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells [J]. Nat. Commun., 2011, 2: 416. |
[34] | Xiao H, Shao Z G, Zhang G, Gao Y, Lu W, Yi B. Fe-N-carbon black for the oxygen reduction reaction in sulfuric acid [J]. Carbon, 2013, 57: 443-451. |
[35] | Wohlgemuth S A, Fellinger T P, Jäker P. Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction [J]. Journal of Materials Chemistry A, 2013, 1(12): 4002-4009. |
[36] | Su P, Xiao H, Zhao J, Yao Y, Shao Z, Li C, Yang Q. Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species [J]. Chem. Sci., 2013, 4: 2941-2946. |
[37] | Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt [J]. Science, 2011, 332: 443-447. |
[38] | Zhang P, Sun F, Xiang Z, Shen Z, Yun J, Cao D. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction [J]. Energy Environ. Sci., 2014, 7: 442-450. |
[39] | Wu Z S, Chen L, Liu J, Parvez K, Liang H, Shu J, Sachdev H, Graf R, Feng X, Müllen K. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers [J]. Adv. Mater., 2013, 26(9): 1450-1455. |
[40] | Lee J S, Park G S, Kim S T. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam [J]. Angewandte Chemie, 2013, 125(3): 1060-1064. |
[41] | Wu G, Johnston C M, Mack N H, Artyushkova K, Ferrandon M, Nelson M, Lezama-Pacheco J S, Conradson S D, More K L, Myers D J, Zelenay P. Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells [J]. J. Mater. Chem., 2011, 21: 11392- 11405. |
[42] | Ai K, Liu Y, Ruan C, Lu L, Lu G. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts [J]. Adv. Mater., 2013, 25(7): 998-1003. |
[43] | Shao M H, Adzic R R. Pd-Fe nanoparticles as electrocatalysts for palladium alloy electrocatalysts for oxygen reduction [J]. Langmuir, 2006, 22: 10409-10415. |
[44] | Li Shang(李赏), Zhou Yanfang(周彦方), Qiu Peng(邱鹏), et al. Preparation of Co-based non-noble metal catalyst and its electrocatalytic activity for oxygen reduction. [J].Chinese Sci. Bull. (科学通报), 2009, 54(7): 881-887. |
[45] | Wu G, Zelenay P. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes [J]. ACS Nano, 2012, 6(11): 9764-9776. |
[46] | Zhang Yuhui(张玉晖), Yi Qingfeng(易清风). Effect of Fe/Co mass ratio on activity of non-noble metal catalyst for oxygen reduction reaction. [J]. CIESC Journal (化工学报), 2014, 65(6): 2113-2119. |
[47] | Wang Y, Nie Y, Wei Z D. Unification of catalytic oxygen reduction and hydrogen evolution reactions: highly dispersive Co nanoparticles encapsulated inside Co and nitrogen co-doped carbon [J].Chemical Communications, 2015, DOI: 10.1039/c5cc02400e. |
[48] | Ohms D, Herzog S, Franke R, Neumann V, Wiesener K, Gamburcev S, Kaisheva A, Iliev I. Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile [J]. J. Power Sources, 1992, 38(3): 327-334. |
[49] | Kramm U I, Dodelet J P. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cell [J]. Phys. Chem. Chem. Phys., 2012, 14: 11673-11688. |
[50] | Kattel Shyam, Wang Guofeng. Reaction pathway for oxygen reduction on FeN4 embedded graphene [J]. J. Phys. Chem. Lett., 2014, 5(3): 452-456. |
[51] | Nallathambi V, Lee J W, Kumaraguru S P, Wu G. Development of high performance carbon composite catalyst for oxygen reduction reaction in proton exchange membrane fuel cells [J]. J. Power Sources, 2008, 183(1): 34-42 . |
[52] | Chen X, Sun S, Xia D. DFT study of polyaniline and metal composites as nonprecious metal catalysts for oxygen reduction in fuel cells [J]. J. Phys. Chem. C, 2012, 116(43): 22737-22742. |
[53] | Liang H W, Feng X, Müllen K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction [J]. J. Am. Chem. Soc., 2013, 135(43): 16002-16005. |
[54] | Faubert G, Cote R, Dodelet J P, Lefèvre M, Bertrand P. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride [J]. Electrochim. Acta, 1999, 44(15): 2589-2603. |
[55] | Zhang F, Pan X, Hu Y, Yu L, Chen X, Jiang P, Zhang H, Deng S, Zhang J, Bolin T B, Zhang S, Huang Y, Bao X. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotube [J]. Acad. Sci. USA, 2013, 110(37): 14861-14866. |
[56] | Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst [J]. J. Am. Chem. Soc., 2008, 130(29): 9414-9419. |
[57] | Hu Y, Xing W, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts [J]. Angew. Chem. Int. Ed., 2014, 53(14): 3675-3679. |
[58] | Wu G, Li N, Zhou D R. Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media [J]. J. Solid State Chem., 2004, 177(10): 3682-3692. |
[59] | Liang Y, Dai H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction [J]. Nature Materials, 2011, 10: 780-786. |
[60] | Liang Y, Dai H. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts [J]. J. Am. Chem. Soc., 2012, 134(7): 3517-3523. |
[61] | Liang Y Y, Wang H L, D P, Chang Wesley, Hong G S, Li Y G, G M, Xie L, Zhou J, Wang J, Regier Tom Z, Wei F, Dai H. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes [J]. J. Am. Chem. Soc., 2012, 134 (38): 15849-15857. |
[62] | Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction [J]. Nat. Mater., 2011, 10: 780-786. |
[63] | Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts [J]. J. Am. Chem. Soc., 2012, 134(7): 3517-3523. |
[64] | Zhu H, Zhang S, Huang Y, Wu L, Sun S. Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction [J]. Nano Lett., 2013, 13(6): 2947-2951. |
[65] | Wang Yao, Ding Wei, Chen Siguo, Nie Yao, Xiong Kun, Wei Zidong. Cobalt carbonate hydroxide/C: an efficient dual electrocatalyst for oxygen reduction/evolution reactions [J]. Chem. Commun., 2014, 50: 15529-15532. |
[66] | Wu G, Zelenay P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst [J]. Chem. Commun., 2010, 46: 7489-7491. |
[67] | Sasaki K, Adzic R R. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction [J]. Phys. Chem. Chem. Phys., 2008, 10: 159-167. |
[68] | Imai H. Structural defects working as active oxygen-reduction sites in partially oxidized Ta-carbonitride core-shell particles probed by using surface-sensitive conversion-electron-yield X-ray absorption spectroscopy[J] Appl. Phys. Lett., 2010, 96(19): 191905. |
[69] | Suntivich J, Gasteige H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles [J]. Nat. Chem., 2011, 334 (6061): 1383-1385. |
[70] | Risch M, Horn Y S. La0.8Sr0.2MnO3-δ decorated with Ba0.5Sr0.5Co0.8Fe0.2O3-δ: a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity [J]. J. Am. Chem. Soc., 2014, 136 (14): 5229-5232. |
[71] | Feng Y J, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction [J]. Phys. Status. Solidi. B, 2008, 245(9): 1792-1806. |
[72] | Behret H, Binder H, Sandstede G. Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals [J]. Electrochim. Acta, 1975, 20(2): 111-117. |
[73] | Feng Y J, He T, Alonso-Vante N. In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles [J]. Chem. Mater., 2007, 20(1): 26-28. |
[74] | Sidik R A, Anderson A B. Co9S8 as a catalyst for electroreduction of O2: quantum chemistry predictions [J]. The Journal of Physical Chemistry B, 2006, 110(2): 936-941. |
[75] | Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions [J]. ACS Catal., 2015, 5 (6): 3625-3637. |
[76] | Feng Y J, He T, Alonso-Vante N. Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid Medium [J]. Fuel Cells, 2010, 10(1): 77-83. |
[77] | Zhou Y X, Yao H B, Wang Y. Hierarchical hollow Co9S8 microspheres: solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties [J]. Chemistry-A European Journal, 2010, 16(39): 12000-12007. |
[78] | Wu G, Chung H T, Nelson M. Graphene-riched Co9S8-NC non-precious metal catalyst for oxygen reduction in alkaline media [J]. ECS Transactions, 2011, 41(1): 1709-1717. |
[79] | Wang H, Liang Y, Li Y. Co1-xS-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction [J]. Angewandte Chemie International Edition, 2011, 50(46): 10969- 10972. |
[80] | Ham D J, Lee J S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells [J]. Energies, 2009, 2(4): 873-899. |
[81] | Zhong H, Zhang H, Liu G. A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride [J]. Electrochemistry Communications, 2006, 8(5): 707-712. |
[82] | Xia D, Liu S, Wang Z. Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction [J]. Journal of Power Sources, 2008, 177(2): 296-302. |
[83] | Kim J H, Ishihara A, Mitsushima S. Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC [J]. Electrochimica Acta, 2007, 52(7): 2492-2497. |
[84] | Ishihara A, Lee K, Doi S. Tantalum oxynitride for a novel cathode of PEFC [J]. Electrochemical and Solid-State Letters, 2005, 8(4): A201-A203. |
[85] | Ando T, Izhar S, Tominaga H. Ammonia-treated carbon-supported cobalt tungsten as fuel cell cathode catalyst [J]. Electrochimica Acta, 2010, 55(8): 2614-2621. |
[86] | Cao B, Veith G M, Diaz R E. Cobalt molybdenum oxynitrides: synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction [J]. Angewandte Chemie, 2013, 125(41): 10953-10957. |
[87] | Yang L, Jiang S, Zhao Y, Hu Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction [J]. Angew. Chem. Int, Ed., 2011, 50(31): 7132-7135. |
[88] | Gong K, Du F, Xia Z, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science, 2009, 323(5915): 760-764. |
[89] | Qu L, Liu Y, Baek J B. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano, 2010, 4(3): 1321-1326. |
[90] | Yu D, Zhang Q, Dai L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction [J]. Journal of the American Chemical Society, 2010, 132(43): 15127-15129. |
[91] | Sheng Z H, Shao L, Chen J J. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis [J]. ACS Nano, 2011, 5(6): 4350-4358. |
[92] | Liu R, Wu D, Feng X. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction [J]. Angewandte Chemie, 2010, 122(14): 2619-2623. |
[93] | Xiong C, Wei Z, Hu B. Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction [J]. Journal of Power Sources, 2012, 215: 216-220. |
[94] | Yang Z, Yao Z, Li G. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction [J]. ACS Nano, 2011, 6(1): 205-211. |
[95] | Yang D S, Bhattacharjya D, Inamdar S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media [J]. Journal of the American Chemical Society, 2012, 134(39): 16127-16130. |
[96] | Liu Z W, Peng F, Wang H J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium [J]. Angewandte Chemie, 2011, 123(14): 3315-3319. |
[97] | Sun X, Zhang Y, Song P. Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction [J]. ACS Catalysis, 2013, 3(8): 1726-1729. |
[98] | Choi C H, Park S H, Woo S I. Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon [J]. Journal of Materials Chemistry, 2012, 22(24): 12107-12115. |
[99] | Liang J, Jiao Y, Jaroniec M. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance [J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500. |
[100] | Zheng Y, Jiao Y, Ge L. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis [J]. Angewandte Chemie, 2013, 125(11): 3192-3198. |
[101] | Wang S, Zhang L, Xia Z. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction [J]. Angewandte Chemie International Edition, 2012, 51(17): 4209-4212. |
[102] | Zhang L, Xia Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells [J]. The Journal of Physical Chemistry C, 2011, 115(22): 11170-11176. |
[103] | Luo Z, Lim S, Tian Z. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property [J]. Journal of Materials Chemistry, 2011, 21(22): 8038-8044. |
[104] | Rao C V, Cabrera C R, Ishikawa Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction [J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2622-2627. |
[105] | Unni S M, Devulapally S, Karjule N. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction [J]. Journal of Materials Chemistry, 2012, 22(44): 23506-23513. |
[106] | Jin Z, Yao J, Kittrell C. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets [J]. ACS Nano, 2011, 5(5): 4112-4117. |
[107] | Gao F, Zhao G L, Yang S. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells [J]. Journal of the American Chemical Society, 2013, 135(9): 3315-3318. |
[108] | Zhao Y, Watanabe K, Hashimoto K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer [J]. J. Am. Chem. Soc., 2012, 134 (48): 19528-19531. |
[109] | Deng D H, Pan X L,Yu L, et al. Toward N-doped graphene via solvothermal synthesis [J]. Chem. Mater., 2011, 23(5): 1188-1193. |
[110] | Liu R L, Wu D Q, Feng X L, Müllen K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction [J]. Angewandte Chemie, 2011, 122(14): 2619- 2623. |
[111] | Proietti E, Jaouen F, Lefèvre M. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells [J]. Nat. Commun., 2011, 2: 416. |
[112] | Yuan S, Shui J L, Grabstanowicz L. A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin [J]. Angew. Chem., 2013, 125(32): 8507-8511. |
[113] | Tian J, Morozan A, Sougrati M T. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: a matter of iron-ligand coordination strength [J]. Angew. Chem. Int. Ed., 2013, 52(27): 6867. |
[114] | Kundu S, Nagaiah T C, Xia W. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction [J]. The Journal of Physical Chemistry C, 2009, 113(32): 14302-14310. |
[115] | Dorjgotov A, Ok J, Jeon K Y. Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction [J]. J. Appl. Electrochem., 2013, 43: 387-397. |
[116] | Sidik R A, Anderson A B, Subramanian N P. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory [J]. The Journal of Physical Chemistry B, 2006, 110(4): 1787-1793. |
[117] | Ding W, Wei Z, Chen S. Space-confinement-induced synthesis of pyridinic and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction [J]. Angewandte Chemie, 2013, 125(45): 11971-11975. |
[118] | Ignaszak A, Ye S, Gyenge E. A study of the catalytic interface for O2 electroreduction on Pt: the interaction between carbon support meso/microstructure and ionomer (Nafion) distribution [J]. J. Phys. Chem. C, 2008, 113(1): 298-307. |
[119] | Antolini E. Carbon supports for low-temperature fuel cell catalysts [J]. Appl. Catal. B: Environ., 2009, 88(1): 1-24. |
[120] | Jaouen F, Proietti E, Lefèvre M. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells [J]. Energy Environ. Sci., 2011, 4(1): 114-130. |
[121] | Ding W, Wei Z D. Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction [J]. J. Am. Chem. Soc., 2015, 137 (16): 5414-5420. |
[122] | Zhang S M, Zhang H Y, Chen S L, et al. Fe-N doped carbon nanotube/graphene composite: facile synthesis and superior electrocatalytic activity [J]. Journal of Materials Chemistry A, 2013, 1: 3302-3308. |
[123] | Tian G L, Zhao M Q, Yu D, Wei F. Graphene hybrids: nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction [J]. Small, 2014, 10(11): 2113-2113. |
[124] | Liu S, Loper C R Kish. A source of crystalline graphite [J]. Carbon, 1991, 29(8): 1119-1124. |
[125] | Mayer H K.Elemental analysis of graphite//The American Carbon Society's 24th Biennial Conference on Carbon-CARBON[C]. 1999: 99. |
[126] | Koshino Y, Narukawa A. Determination of trace metal impurities in graphite powders by acid pressure decomposition and inductively coupled plasma atomic emission spectrometry [J]. Analyst, 1993, 118(7): 827-830. |
[127] | Zaghib K, Song X, Guerfi A. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal [J]. Journal of Power Sources, 2003, 119: 8-15. |
[128] | McKee D W. Effect of metallic impurities on the gasification of graphite in water vapor and hydrogen [J]. Carbon, 1974, 12(4): 453-464. |
[129] | Heintz E A, Parker W E. Catalytic effect of major impurities on graphite oxidation [J]. Carbon, 1966, 4(4): 473-482. |
[130] | Dai X, Wildgoose G G, Compton R G. Apparent 'electrocatalytic' activity of multiwalled carbon nanotubes in the detection of the anaesthetic halothane: occluded copper nanoparticles [J]. Analyst, 2006, 131(8): 901-906. |
[131] | Batchelor-McAuley C, Wildgoose G G, Compton R G. Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes [J]. Sensors and Actuators B: Chemical, 2008, 132(1): 356-360. |
[132] | Jurkschat K, Ji X, Crossley A. Super-washing does not leave single walled carbon nanotubes iron-free [J]. Analyst, 2006, 132(1): 21-23. |
[133] | Dai X, Wildgoose G G, Salter C. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes [J]. Analytical Chemistry, 2006, 78(17): 6102-6108. |
[134] | Wong C H A, Chua C K, Khezri B. Graphene oxide nanoribbons from the oxidative opening of carbon nanotubes retain electrochemically active metallic impurities [J]. Angewandte Chemie, 2013, 125(33): 8847-8850. |
[135] | Masa J, Zhao A, Xia W. Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction [J]. Electrochemistry Communications, 2013, 34: 113-116. |
[136] | Wang L, Ambrosi A, Pumera M. "Metal-free" catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities [J]. Angewandte Chemie International Edition, 2013, 52(51): 13818-13821. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[3] | 郭佳宁, 向中华. 金属大环化合物基氧还原电催化剂的研究进展[J]. 化工学报, 2021, 72(1): 384-397. |
[4] | 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
[5] | 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574. |
[6] | 王尧,唐艺芸. 氧电极金属单原子催化剂的研究进展[J]. 化工学报, 2020, 71(10): 4409-4428. |
[7] | 贺新福, 龙雪颖, 吴红菊, 张凯博, 周均, 李可可, 张亚婷, 邱介山. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315. |
[8] | 周宇, 王宇新. 杂原子掺杂碳基氧还原反应电催化剂研究进展[J]. 化工学报, 2017, 68(2): 519-534. |
[9] | 朱晓兵, 张建辉, 李小松, 刘景林, 刘剑豪, 金灿. 空气源电化学连续分离制氧(Ⅰ):单池性能优化[J]. 化工学报, 2016, 67(5): 2022-2032. |
[10] | 彭跃进, 彭赟, 李伦, 刘志祥, 陈维荣. 质子交换膜燃料电池电源系统停机特性及控制策略[J]. 化工学报, 2015, 66(3): 1178-1184. |
[11] | 沈俊, 周兵, 邱子朝, 涂正凯, 刘志春, 刘伟. 质子交换膜燃料电池强化传质[J]. 化工学报, 2014, 65(S1): 421-425. |
[12] | 蔡光旭1,2,郭建伟2,王佳1. 交流阻抗技术在质子交换膜燃料电池上的研究进展[J]. 化工进展, 2014, 33(01): 56-63. |
[13] | 卜永东, 沈寅麒, 杜小泽, 杨立军, 杨勇平. 仿蜂巢微通道分叉结构的甲醇重整制氢[J]. 化工学报, 2013, 64(6): 2177-2185. |
[14] | 汪飞杰, 杨代军, 张浩, 马建新. 1.5 kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386. |
[15] | 戴丽萍,熊俊俏,刘海英. 杂质气体对质子交换膜燃料电池性能影响的研究进展[J]. 化工进展, 2013, 32(09): 2068-2076. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||