化工学报 ›› 2015, Vol. 66 ›› Issue (9): 3350-3356.DOI: 10.11949/j.issn.0438-1157.20150914
朱明1, 王彩霞2, 李春1,2
收稿日期:
2015-06-12
修回日期:
2015-06-19
出版日期:
2015-09-05
发布日期:
2015-09-05
通讯作者:
李春
基金资助:
国家杰出青年科学基金项目(21425624);国家高技术研究发展计划重点项目(2012AA02A704)。
ZHU Ming1, WANG Caixia2, LI Chun1,2
Received:
2015-06-12
Revised:
2015-06-19
Online:
2015-09-05
Published:
2015-09-05
Supported by:
supported by the National Science Foundation for Distinguished Young Scholars of China (21425624) and the National High Technology Research and Development Program of China (2012AA02A704).
摘要:
三萜类化合物如甘草次酸、皂苷等是许多药物在细胞内发挥药理活性的主要存在形式,可作为药物的主要活性成分,有些还可作为甜味剂等。但是萜类化合物在天然植株中含量很低,不能很好地对其开发和利用。随着萜类物质代谢中关键酶的发现,整个萜类代谢途径变得清晰。近年来合成生物学快速发展,为利用微生物发酵生产三萜化合物奠定了基础。综述了酿酒酵母中三萜化合物的合成途径及在此途径中起重要作用的细胞色素单氧化酶的研究进展。
中图分类号:
朱明, 王彩霞, 李春. 工程化酿酒酵母合成植物三萜类化合物[J]. 化工学报, 2015, 66(9): 3350-3356.
ZHU Ming, WANG Caixia, LI Chun. Engineered Saccharomyces cerevisiae for biosynthesis of plant triterpenoids[J]. CIESC Journal, 2015, 66(9): 3350-3356.
[1] | Yan X, Fan Y, Wei W, Wang P, Liu Q, Wei Y, Zhang L, Zhao G, Yue J, Zhou Z. Production of bioactive ginsenoside compound K in metabolically engineered yeast [J]. Cell Research, 2014, 24(6): 770-773. |
[2] | Kiso Y, Kato O, Hikino H. Assay methods for antihepatotoxic activity using peroxide-induced cytotoxicity in primary cultured hepatocytes1 [J]. Planta Medica, 1985, 51(1): 50-52. |
[3] | Pompei R, Flore O, Marccialis M A, Pani A, Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles [J]. Nature, 1979, 281(5733): 689-690. |
[4] | Park H Y, Park S H, Yoon H K, Han M J, Kim D H. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide [J]. Archives of Pharmacal Research, 2004, 27(1): 57-60. |
[5] | Okamoto H, Yoshida D, Saito Y, Mizusaki S. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis by sweetening agents and related compounds [J]. Cancer Letters, 1983, 21(1): 29-35. |
[6] | Kitagawa I. Licorice root - a natural sweetener and an important ingredient in Chinese medicine [J]. Pure and Applied Chemistry, 2002, 74(7): 1189-1198. |
[7] | Nose M, Ito M, Kamimura K, Shimizu M, Ogihara Y. A comparison of the antihepatotoxic activity between glycyrrhizin and glycyrrhetinic acid [J]. Planta Medica, 1994, 60(2): 136-139. |
[8] | Zhang W, Popovich D G. Effect of soyasapogenol A and soyasapogenol B concentrated extracts on Hep-G2 cell proliferation and apoptosis [J]. Journal of Agricultural and Food Chemistry, 2008, 56(8): 2603-2608. |
[9] | Smith J D, Salyer J, Esawarnanadam S, Lee S O. Hypocholesterolemic effects of soyasaponins and soyasapogenol B [J]. The FASEB Journal, 2011, 25: 980.6. |
[10] | Connor M R, Atsumi S. Synthetic biology guides biofuel production [J]. Journal of Biomedicine and Biotechnology, 2010, 2010: 541698. |
[11] | Baez A, Cho K M, Liao J C. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal [J]. Applied Microbiology and Biotechnology, 2011, 90(5): 1681-1690. |
[12] | Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli [J]. Applied Environmental Microbiology, 2011, 77(9): 2905-2915. |
[13] | Shi A, Zhu X, Lu J, Zhang X, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production [J]. Metabolic Engineering, 2013, 16: 1-10. |
[14] | Steen E J, Kang Y S, Bokinsky G, Hu Z H, Schirmer A, Mcclure A, Del Cardayre S B, Keasling J D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass [J]. Nature, 2010, 463(7280): 559-U182. |
[15] | Dai Z B, Wang B B, Liu Y, Shi M Y, Wang D, Zhang X N, Liu T, Huang L Q, Zhang X L. Producing aglycons of ginsenosides in bakers' yeast [J]. Science Reports, 2014, 4: 3698. |
[16] | Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima E O, Akashi T, Aoki T, Saito K, Muranaka T. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin [J]. Plant Cell, 2011, 23(11): 4112-4123. |
[17] | Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14204-14209. |
[18] | Yu F, Thamm A M, Reed D, Villa-Ruano N, Quesada A L, Gloria E L, Covello P, De Luca V. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis [J]. Phytochemistry, 2013, 91: 122-127. |
[19] | Fukushima E O, Seki H, Ohyama K, Ono E, Umemoto N, Mizutani M, Saito K, Muranaka T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis [J]. Plant & Cell Physiology, 2011, 52(12): 2050-2061. |
[20] | Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C Y, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2006, 440(7086): 940-943. |
[21] | Paddon C J, Westfall P J, Pitera D J, Benjamin K, Fisher K, Mcphee D, Leavell M D, Tai A, Main A, Eng D, Polichuk D R, Teoh H, Reed D W, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens K W, Fickes S, Galazzo J, Gaucher S P, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade L F, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello P S, Keasling J D, Reiling K K, Renninger N S, Newman J D. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
[22] | Ajikumar P K, Xiao W H, Tyo K E J, Wang Y, Simeon F, Leonard E, Mucha O, Phon T H, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70-74. |
[23] | Noskov V N, Karas B J, Young L, Chuang R Y, Gibson D G, Lin Y C, Stam J, Yonemoto I T, Suzuki Y, Andrews-Pfannkoch C, Glass J I, Smith H O, Hutchison C A, Venter J C, Weyman P D. Assembly of large, high G plus C bacterial DNA fragments in yeast [J]. ACS Synthetic Biology, 2012, 1(7): 267-273. |
[24] | Wingler L M, Cornish V W. Reiterative recombination for the in vivo assembly of libraries of multigene pathways [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15135-15140. |
[25] | Jakounas T, Sonde I, Herrgard M, Harrison S J, Kristensen M, Pedersen L E, Jensen M K, Keasling J D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 213-222. |
[26] | Bozak K R, O'keefe D P, Christoffersen R E. Expression of a ripening-related avocado (Persea americana) cytochrome P450 in yeast [J]. Plant Physiology, 1992, 100(4): 1976-1981. |
[27] | Siminszky B, Corbin F T, Ward E R, Fleischmann T J, Dewey R E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1750-1755. |
[28] | Schopfer C R, Kochs G, Lottspeich F, Ebel J. Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.) [J]. FEBS Letters, 1998, 432(3): 182-186. |
[29] | Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K. Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens [J]. Plant & Cell Physiology, 2001, 42(12): 1338-1344. |
[30] | Mizutani M, Ohta D, Sato R. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta [J]. Plant Physiology, 1997, 113(3): 755-763. |
[31] | Humphreys J M, Hemm M R, Chapple C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10045-10050. |
[32] | Nair R B, Xia Q, Kartha C J, Kurylo E, Hirji R N, Datla R, Selvaraj G. Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast [J]. Plant Physiology, 2002, 130(1): 210-220. |
[33] | Schoendorf A, Rithner C D, Williams R M, Croteau R B. Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1501-1506. |
[34] | Moses T, Pollier J, Faizal A, Apers S, Pieters L, Thevelein J M, Geelen D, Goossens A. Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata [J]. Molecular Plant, 2015, 8(1): 122-135. |
[35] | Fukushima E O, Seki H, Sawai S, Suzuki M, Ohyama K, Saito K, Muranaka T. Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast [J]. Plant & Cell Physiology, 2013, 54(5): 740-749. |
[36] | Moses T, Pollier J, Almagro L, Buyst D, Van Montagu M, Pedreno M A, Martins J C, Thevelein J M, Goossens A. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16alpha hydroxylase from Bupleurum falcatum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1634-1639. |
[37] | Renault H, Bassard J E, Hamberger B, Werck-Reichhart D. Cytochrome P450-mediated metabolic engineering: current progress and future challenges [J]. Current Opinion in Plant Biology, 2014, 19: 27-34. |
[38] | Zheng X, Xu H, Ma X, Zhan R, Chen W. Triterpenoid saponin biosynthetic pathway profiling and candidate gene mining of the Ilex asprella root using RNA-Seq [J]. International Journal of Molecular Sciences, 2014, 15(4): 5970-5987. |
[39] | Misra R C, Maiti P, Chanotiya C S, Shanker K, Ghosh S. Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil [J]. Plant Physiology, 2014, 164(2): 1028-1044. |
[40] | Li Y, Luo H M, Sun C, Song J Y, Sun Y Z, Wu Q, Wang N, Yao H, Steinmetz A, Chen S L. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics, 2010, 11: 268. |
[41] | Naoumkina M A, Modolo L V, Huhman D V, Urbanczyk-Wochniak E, Tang Y, Sumner L W, Dixon R A. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula [J]. Plant Cell, 2010, 22(3): 850-866. |
[42] | Ramilowski J A, Sawai S, Seki H, Mochida K, Yoshida T, Sakurai T, Muranaka T, Saito K, Daub C O. Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals [J]. Plant & Cell Physiology, 2013, 54(5): 697-710. |
[43] | Pollier J, Morreel K, Geelen D, Goossens A. Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry [J]. Journal of Natural Products, 2011, 74(6): 1462-1476. |
[44] | Jensen K, Moller B L. Plant NADPH-cytochrome P450 oxidoreductases [J]. Phytochemistry, 2010, 71(2/3): 132-141. |
[45] | Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallstrom B M, Petranovic D, Nielsen J. Biofuels: altered sterol composition renders yeast thermotolerant [J]. Science, 2014, 346(6205): 75-78. |
[46] | Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense [J]. Plant Physiology, 2005, 139(1): 341-352. |
[1] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[2] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[3] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[4] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[5] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[6] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[7] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[8] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[9] | 赵贞尧, 张保财, 李锋, 宋浩. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482. |
[10] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
[11] | 王炼, 吴迪, 周景文. 木脂素的生物合成及其微生物法生产的研究进展[J]. 化工学报, 2021, 72(1): 320-333. |
[12] | 秦磊, 俞杰, 宁小钰, 孙文涛, 李春. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994. |
[13] | 高虎涛, 申晓林, 孙新晓, 王佳, 袁其朋. 代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J]. 化工学报, 2020, 71(9): 4058-4070. |
[14] | 徐静, 由紫暄, 张君奇, 陈正, 吴德光, 李锋, 宋浩. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962. |
[15] | 徐彦芹, 杨锡智, 罗若诗, 黄玉红, 霍锋, 王丹. 合成生物学在生物基塑料制造中的应用[J]. 化工学报, 2020, 71(10): 4520-4531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||