化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4862-4868.doi: 10.11949/j.issn.0438-1157.20180581

• 材料化学工程与纳米技术 • 上一篇    下一篇

近红外光响应氧化石墨烯/微凝胶复合智能水凝胶

张宁, 单国荣   

  1. 化学工程联合国家重点实验室, 浙江大学化学工程与生物工程学院, 浙江杭州 310027
  • 收稿日期:2018-05-30 修回日期:2018-08-27 出版日期:2018-11-05 发布日期:2018-11-05
  • 通讯作者: 单国荣 E-mail:shangr@zju.edu.cn

Near-infrared light and temperature responsive nanocomposite hydrogel

ZHANG Ning, SHAN Guorong   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2018-05-30 Revised:2018-08-27 Published:2018-11-05 Online:2018-11-05

摘要:

设计合成了一种包含氧化石墨烯(GO)片层、聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶球体和PNIPAM链段的复合结构水凝胶。通过控制聚合时间得到负载双键且粒径不同的PNIPAM微凝胶,将其作为交联点与N-异丙基丙烯酰胺(NIPAM)聚合,GO作为纳米填料掺入水凝胶体系,GO片层上的含氧基团与NIPAM上的胺基产生氢键物理交联。此方法制备的复合水凝胶同时具有温度敏感和近红外光敏感特性,通过改变GO浓度、微凝胶的合成时间、NIPAM浓度等条件,水凝胶的光敏感性和温度敏感性得到提升。相比于传统PNIPAM水凝胶,此种复合水凝胶能够对光响应,实现非接触式控制形变,且响应速率快、响应程度高,可应用于光控开关等领域。

关键词: 纳米材料, 复合材料, 聚合物, 氧化石墨烯, 水凝胶

Abstract:

A composite structural hydrogel comprising a graphene oxide (GO) sheet, a poly(N-isopropylacrylamide) (PNIPAM) microgel sphere and a PNIPAM segment was designed and synthesized. Combination of the GO sheets and thermoresponsive PNIPAM microsphere polymeric networks provides the hydrogels with an NIR responsive property. The oxidized groups of GO nanosheets enable the formation of a hydrogen bond interaction with the amide groups of PNIPAM chains. PNIPAM microspheres in hydrogel improve the response rate and responsive swelling ratio. By changing the concentration of GO, synthesis time of the microsphere, concentration of N-isopropylacrylamide (NIPAM) and the propotion of microspheres and GO, the light and thermal sensitivity of the hydrogel can be enhanced. Compared to traditional PNIPAM hydrogel, such hydrogels are capable of responsing to light, achieving non-contact controlled deformation with high response speed and high degree of response, which may expand the scope of hydrogel applications, such as NIR-controllled switch, and provide enhanced performance.

Key words: nanomaterials, composite materials, polymer, graphene oxide, hydrogel

中图分类号: 

  • TQ317.9
[1] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224.
[2] ZHANG Y Y, GONG S S, ZHANG Q, et al. Graphene-based artificial nacre nanocomposites[J]. Chemical Society Reviews, 2016, 45(9):2378-2395.
[3] LI F, JIANG X, ZHAO J J, et al. Graphene oxide:a promising nanomaterial for energy and environmental applications[J]. Nano Energy, 2015, 16:488-515.
[4] NARAYAN R, KIM J E, KIM J Y, et al. Graphene oxide liquid crystals:discovery, evolution and applications[J]. Advanced Materials, 2016, 28(16):3045-3068.
[5] CHEN H, XU H Y, WANG S Y, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life[J]. Science Advances, 2017, 3(12):eaao7233.
[6] LIU X, SONG K D, LU C, et al. Electrospun PU@GO separators for advanced lithium ion batteries[J]. Journal of Membrane Science, 2018, 555:1-6.
[7] YE M H, GAO J, XIAO Y K, et al. Metal/graphene oxide batteries[J]. Carbon, 2017, 125:299-307.
[8] TAN Y L, CHU Z Y, JIANG Z H, et al. Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators[J]. ACS Nano, 2017, 11(7):6843-6852.
[9] CHEN L Z, WENG M C, ZHOU P D, et al. Multi-responsive actuators based on a graphene oxide composite:intelligent robot and bioinspired applications[J]. Nanoscale, 2017, 9(28):9825-9833.
[10] WANG Y F, SONG C P, YU X H, et al. Thermo-responsive hydrogels with tunable transition temperature crosslinked by multifunctional graphene oxide nanosheets[J]. Composites Science and Technology, 2017, 151:139-146.
[11] MORELOS-GOMEZ A, CRUZ-SILVA R, MURAMATSU H, et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes[J]. Nature Nanotechnology, 2017, 12(11):1083-1088.
[12] ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6):546-550.
[13] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
[14] CASABIANCA L B, SHAIBAT M A, CAI W W, et al. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations[J]. Journal of the American Chemical Society, 2010, 132(16):5672-5676.
[15] TEXTER J. Colloidal graphene-scalable processing for advanced materials[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6):454-4649.
[16] NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society, 2006, 128(24):7720-7721.
[17] YANG Y Y, SONG S S, ZHAO Z D, et al. Graphene oxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 513:315-324.
[18] GENG H J. Preparation and characterization of cellulose/N,N¢-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels[J]. Carbohydrate Polymers, 2018, 196:289-298.
[19] 单国荣, 张宁. 氧化石墨烯复合水凝胶研究进展[J]. 化工学报, 2018, 69(2):535-545. SHAN G R, ZHANG N. Research progress on garphene oxide composite hydrogels[J]. CIESC Journal, 2018, 69(2):535-545.
[20] ZHANG L, WANG Z P, XU C, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels[J]. Journal of Materials Chemistry, 2011, 21(28):10399-10406.
[21] PARSAMANESH M, TEHRANI A D, MANSOURPANAH Y. Supramolecular hydrogel based on cyclodextrin modified GO as a potent natural organic matter absorbent[J]. European Polymer Journal, 2017, 92:126-136.
[22] ZHU C H, LU Y, PENG J, et al. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves[J]. Advanced Functional Materials, 2012, 22(19):4017-4022.
[23] ABDELSAYED V, MOUSSA S, HASSAN H M, et al. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature[J]. Journal of Physical Chemistry Letters, 2010, 1(19):2804-2809.
[24] KIM D, LEE H S, YOON J. Remote control of volume phase transition of hydrogels containing graphene oxide by visible light irradiation[J]. RSC Advances, 2014, 4(48):25379-25383.
[25] WANG E, DESAI M S, LEE S W. Light-controlled graphene-elastin composite hydrogel actuators[J]. Nano Letters, 2013, 13(6):2826-2830.
[26] LI W, WANG J S, REN J S, et al. 3D graphene oxide-polymer hydrogel:near-infrared light-triggered active scaffold for reversible cell capture and on-demand release[J]. Advanced Materials, 2013, 25(46):6737-6743.
[27] CHOU H T, CHEN Y C, LEE C Y, et al. Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency[J]. Solar Energy Materials and Solar Cells, 2017, 166:45-51.
[28] WANG J P, GAN D J, LYON L A, et al. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions[J]. Journal of the American Chemical Society, 2001, 123(45):11284-11289.
[29] SAUNDERS B R, VINCENT B. Microgel particles as model colloids:theory, properties and applications[J]. Advances in Colloid & Interface Science, 1999, 80(1):1-25.
[30] ZHANG J T, HUANG S W, XUE Y N, et al. Poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics[J]. Macromolecular Rapid Communications, 2005, 26(16):1346-1350.
[31] 陈勇, 单国荣. 丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵反相乳液聚合动力学[J]. 化工学报, 2018, 69(2):563-569. CHEN Y, SHAN G R. Kinetics of acrylamide and 2-methylacryloylxyethyltrimethyl ammonium chloride in inverse emulsion polymerization[J]. CIESC Journal, 2018, 69(2):563-569.
[1] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[2] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[3] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[4] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[5] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[6] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[7] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[8] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[9] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
[10] 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753.
[11] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[12] 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043.
[13] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[14] 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146.
[15] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!