1 |
国家环境保护局 . 水质分析方法标准: GB7466~7494—87[S]. 北京: 中国标准出版社, 1987.
|
|
State Environmental Protection Agency . Standard for water quality analysis: GB7466—7494—87[S]. Beijing: Standards Press of China, 1987.
|
2 |
李一锦, 夏善红 . BOD微生物传感器关键技术及其发展[J]. 传感器与微系统, 2015, 34(7): 5-11.
|
|
Li Y J , Xia S H . Key techniques of BOD microbial sensor and its development[J]. Transducer and Microsystem Technologies, 2015, 34(7): 5-11.
|
3 |
周平, 柴天佑 . 典型赤铁矿磨矿过程智能运行反馈控制[J]. 控制理论与应用, 2014, 31(10): 1352-1359.
|
|
Zhou P , Chai T Y . Intelligent operational feedback control for typical hematite grinding processes[J]. Control Theory & Applications, 2014, 31(10): 1352-1359.
|
4 |
蒋朝辉, 李晞月, 桂卫华, 等 . 分段线性回归和动态加权神经网络融合的高炉料位预测[J]. 控制理论与应用, 2015, 32(6): 801-809.
|
|
Jiang Z H , Li X Y , Gui W H , et al . Blast furnace stockline prediction by segmented linear-regression and dynamic weighting neural network[J]. Control Theory & Application, 2015, 32(6): 801-809.
|
5 |
Mustafa Y A , Jai G M , Alwared A I , et al . The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP[J]. Environmental Science & Pollution Research, 2014, 21(12): 1-8.
|
6 |
Haimi H , Mulas M , Corrona F , et al . Data-derived soft-sensors for biological wastewater treatment plants: an overview[J]. Environmental Modelling & Software, 2013, 47(3): 88-107.
|
7 |
Dürrenmatt D J , Gujer W . Data-driven modeling approaches to support wastewater treatment plant operation[J]. Environmental Modelling & Software, 2012, 30(5): 47-56.
|
8 |
冉维丽, 乔俊飞 . 基于PCA-GABP神经网络的BOD软测量方法[J]. 控制工程, 2004, 11(3): 212-215.
|
|
Ran W L , Qiao J F . Soft-measuring technique to predict BOD based on PCA-GABP neural networks[J]. Control Engineering of China, 2004, 11(3): 212-215.
|
9 |
Tao E P , Shen W H , Liu T L , et al . Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 128(15): 49-55.
|
10 |
郭民, 张一弛, 韩红桂 . 基于模糊神经网络的出水总磷软测量方法研究[J]. 计算机与应用化学, 2016, 33(2): 223-227.
|
|
Guo M , Zhang Y C , Han H G . Effluent total phosphorus detecting method and its application based on soft-sensor and FNN techniques[J]. Computers and Applied Chemistry, 2016, 33(2): 223-227.
|
11 |
Sharmin R , Sundararaj U , Shah S , et al . Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant[J]. Chemical Engineering Science, 2006, 61(19): 6372-6384.
|
12 |
Mirbagheri S A , Bagheri M , Boudaghpour S , et al . Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks[J]. Journal of Environmental Health Science & Engineering, 2015, 13(1): 1-15.
|
13 |
王树东, 葛珉昊, 陈明明 . 基于混合递阶遗传算法优化RBF神经网络的BOD5软测量方法[J]. 给水排水, 2014, 40(3): 149-153.
|
|
Wang S D , Ge M H , Chen M M . A BOD5 soft-sensing method based on a hybrid hierarchical genetic algorithm optimized RBF neural network[J]. Water & Wastewater Engineering, 2014, 40(3): 149-153.
|
14 |
Han H G , Chen Q L , Qiao J F . An efficient self-organizing RBF neural network for water quality prediction[J]. Neural Networks, 2011, 24(7): 717-725.
|
15 |
Tyukin I Y , Prokhorov D V . Feasibility of random basis function approximators for modeling and control[C]//Alexander P. Proceedings of 2009 IEEE International Symposium on Intelligent Control (ISIC). St. Petersburg, Russia: IEEE, 2009: 1391-1396.
|
16 |
Li M , Wang D . Insights into randomized algorithms for neural networks: practical issues and common pitfalls[J]. Information Sciences, 2017, s382/383: 170-178.
|
17 |
Yu H , Reiner P D , Xie T , et al . An incremental design of radial basis function networks[J]. IEEE Transactions on Neural Network and Learning System, 2014, 25(10): 1793-1803.
|
18 |
Press W H , Teukolsky S A , Vetterling W T , et al . Numerical Recipes in C[M]. Cambridge: Cambridge University Press, 1988.
|
19 |
Yu L , Liu H . Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004, 5(12): 1205-1224.
|
20 |
Wilamowski B M , Yu H . Improved computation for Levenberg-Marquardt training[J]. IEEE Transactions on Neural Networks, 2010, 21(6): 930-937.
|
21 |
Xie T , Yu H , Hewlett J , et al . Fast and efficient second-order method for training radial basis function networks[J]. IEEE Transactions on Neural Networks & Learning Systems, 2012, 23(4): 609-619.
|
22 |
Hagan M T , Menhaj M B . Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 2002, 5(6): 989-993.
|
23 |
Yu W , Harris T J . Parameter uncertainty effects on variance-based sensitivity analysis[J]. Reliability Engineering & System Safety, 2009, 94(2): 596-603.
|
24 |
Saltelli A . Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145(2): 280-297.
|
25 |
Lauret P , Fock E , Mara T A . A node pruning algorithm based on a Fourier amplitude sensitivity test method[J]. IEEE Transactions on Neural Networks, 2006, 17(2): 273-293.
|
26 |
Qiao J , Li S , Han H , et al . An improved algorithm for building self-organizing feedforward neural networks[J]. Neurocomputing, 2017, 262: 28-40.
|
27 |
Lu Y , Sundararajan N , Saratchandran P . A sequential learning scheme for function approximation using minimal radial basis function neural networks[J]. Neural Computation, 1997, 9(2): 461-478.
|
28 |
Huang G B , Saratchandran P , Sundararajan N . An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 2004, 34(6): 2284-2292.
|
29 |
Huang G B , Saratchandran P , Sundararajan N . A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J]. IEEE Transactions on Neural Networks, 2005, 16(1): 57-67.
|