化工学报 ›› 2019, Vol. 70 ›› Issue (2): 696-706.DOI: 10.11949/j.issn.0438-1157.20181354
收稿日期:
2018-11-16
修回日期:
2018-11-26
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
汤健
作者简介:
汤健(1974—),男,博士,教授,<email>freeflytang@bjut.edu.cn</email>
基金资助:
Received:
2018-11-16
Revised:
2018-11-26
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jian TANG
摘要:
城市固废焚烧(MSWI)过程排放的二噁英 (DXN)是被称为“世纪之毒”的持续性污染物。该过程的多阶段、多温度区间的物理化学特性导致DXN排放浓度的机理模型难以构建。工业实际中通常以月或季为周期耗时近1周时间在实验室以离线化验方式滞后检测。针对这些问题,提出了基于选择性集成(SEN)核学习算法的DXN排放浓度软测量方法。首先,基于先验知识给出候选核参数集和候选惩罚参数集,采用核学习算法构建基于这些超参数的候选子子模型;然后,耦合优化和加权算法对相同核参数的候选子子模型进行选择与合并,进而得到基于不同核参数的候选SEN子模型集合;最后,再次采用优化和加权算法获得结构与超参数自适应的多层SEN软测量模型。采用UCI平台水泥抗压强度和焚烧过程DXN数据验证了所提方法的有效性。
中图分类号:
汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二噁英排放浓度软测量[J]. 化工学报, 2019, 70(2): 696-706.
Jian TANG, Junfei QIAO. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706.
编码序号 | 核参数 | 模型类型 | 预测误差 (RMSE) | 惩罚参数 (编码序号) |
---|---|---|---|---|
1 | 0.1 | EnAll-sub-sub | 16.1059 | all |
SEN-sub | 15.0883 | 15~17 | ||
Best-Sub-sub | 15.0883 | 17 | ||
2 | 1 | EnAll-sub-sub | 12.8921 | all |
SEN-sub | 12.4234 | 2~17 | ||
Best-Sub-sub | 11.8064 | 6 | ||
3 | 100 | EnAll-sub-sub | 9.8368 | all |
SEN-sub | 7.3687 | 4~17 | ||
Best-Sub-sub | 7.7284 | 10 | ||
4 | 1000 | EnAll-sub-sub | 15.9703 | all |
SEN-sub | 8.1098 | 11~17 | ||
Best-Sub-sub | 8.1362 | 13 | ||
5 | 2000 | EnAll-sub-sub | 16.4346 | all |
SEN-sub | 8.1475 | 14~17 | ||
Best-Sub-sub | 8.1459 | 15 | ||
6 | 4000 | EnAll-sub-sub | 16.6256 | all |
SEN-sub | 8.1642 | 16~17 | ||
Best-Sub-sub | 8.1511 | 17 | ||
7 | 6000 | EnAll-sub-sub | 16.6813 | all |
SEN-sub | 8.3123 | 16~17 | ||
Best-Sub-sub | 8.2182 | 17 | ||
8 | 8000 | EnAll-sub-sub | 16.7074 | all |
SEN-sub | 8.5411 | 16~17 | ||
Best-Sub-sub | 8.3811 | 17 | ||
9 | 10000 | EnAll-sub-sub | 16.7225 | all |
SEN-sub | 8.7862 | 16~17 | ||
Best-Sub-sub | 8.5831 | 17 | ||
10 | 20000 | EnAll-sub-sub | 16.7514 | all |
SEN-sub | 9.7130 | 16~17 | ||
Best-Sub-sub | 9.4900 | 17 | ||
11 | 40000 | EnAll-sub-sub | 16.7652 | all |
SEN-sub | 10.4129 | 16~17 | ||
Best-Sub-sub | 10.2943 | 17 | ||
12 | 60000 | EnAll-sub-sub | 16.7697 | all |
SEN-sub | 10.6267 | 16~17 | ||
Best-Sub-sub | 10.5610 | 17 | ||
13 | 80000 | EnAll-sub-sub | 16.7719 | all |
SEN-sub | 10.7145 | 16~17 | ||
Best-Sub-sub | 10.6731 | 17 | ||
14 | 16000 | EnAll-sub-sub | 16.7752 | all |
SEN-sub | 10.8124 | 16~17 | ||
Best-Sub-sub | 10.7968 | 17 |
表1 水泥抗压强度候选SEN子模型的统计结果
Table 1 Statistical results of candidate SEN sub-model for concrete compressive strength
编码序号 | 核参数 | 模型类型 | 预测误差 (RMSE) | 惩罚参数 (编码序号) |
---|---|---|---|---|
1 | 0.1 | EnAll-sub-sub | 16.1059 | all |
SEN-sub | 15.0883 | 15~17 | ||
Best-Sub-sub | 15.0883 | 17 | ||
2 | 1 | EnAll-sub-sub | 12.8921 | all |
SEN-sub | 12.4234 | 2~17 | ||
Best-Sub-sub | 11.8064 | 6 | ||
3 | 100 | EnAll-sub-sub | 9.8368 | all |
SEN-sub | 7.3687 | 4~17 | ||
Best-Sub-sub | 7.7284 | 10 | ||
4 | 1000 | EnAll-sub-sub | 15.9703 | all |
SEN-sub | 8.1098 | 11~17 | ||
Best-Sub-sub | 8.1362 | 13 | ||
5 | 2000 | EnAll-sub-sub | 16.4346 | all |
SEN-sub | 8.1475 | 14~17 | ||
Best-Sub-sub | 8.1459 | 15 | ||
6 | 4000 | EnAll-sub-sub | 16.6256 | all |
SEN-sub | 8.1642 | 16~17 | ||
Best-Sub-sub | 8.1511 | 17 | ||
7 | 6000 | EnAll-sub-sub | 16.6813 | all |
SEN-sub | 8.3123 | 16~17 | ||
Best-Sub-sub | 8.2182 | 17 | ||
8 | 8000 | EnAll-sub-sub | 16.7074 | all |
SEN-sub | 8.5411 | 16~17 | ||
Best-Sub-sub | 8.3811 | 17 | ||
9 | 10000 | EnAll-sub-sub | 16.7225 | all |
SEN-sub | 8.7862 | 16~17 | ||
Best-Sub-sub | 8.5831 | 17 | ||
10 | 20000 | EnAll-sub-sub | 16.7514 | all |
SEN-sub | 9.7130 | 16~17 | ||
Best-Sub-sub | 9.4900 | 17 | ||
11 | 40000 | EnAll-sub-sub | 16.7652 | all |
SEN-sub | 10.4129 | 16~17 | ||
Best-Sub-sub | 10.2943 | 17 | ||
12 | 60000 | EnAll-sub-sub | 16.7697 | all |
SEN-sub | 10.6267 | 16~17 | ||
Best-Sub-sub | 10.5610 | 17 | ||
13 | 80000 | EnAll-sub-sub | 16.7719 | all |
SEN-sub | 10.7145 | 16~17 | ||
Best-Sub-sub | 10.6731 | 17 | ||
14 | 16000 | EnAll-sub-sub | 16.7752 | all |
SEN-sub | 10.8124 | 16~17 | ||
Best-Sub-sub | 10.7968 | 17 |
集成尺寸 | 集成子模型(核参数)的编码序号 | RMSE |
---|---|---|
2 | 2,1 | 12.8102 |
3 | 3,2,1 | 9.9116 |
4 | 4,3,2,1 | 8.9488 |
5 | 5,4,3,2,1 | 8.5528 |
6 | 6,5,4,3,2, | 8.3599 |
7 | 7,6,5,4,3,2,1 | 8.2641 |
8 | 8,7,6,5,4,3,2,1 | 8.2247 |
9 | 9,8,7,6,5,4,3,2,1 | 8.2221 |
10 | 10,9,8,7,6,5,4,3,2,1 | 8.2942 |
11 | 11,10,9,8,7,6,5,4,3,2,1 | 8.4228 |
12 | 12, 11, 10,9,8,7,6,5,4,3,2,1 | 8.5617 |
13 | 13, 11, 10,9,8,7,6,5,4,3,2,1 | 8.6963 |
表2 不同集成尺寸水泥抗压强度SEN模型的统计结果
Table 2 Statistical results of SEN model with different size for concrete compressive strength
集成尺寸 | 集成子模型(核参数)的编码序号 | RMSE |
---|---|---|
2 | 2,1 | 12.8102 |
3 | 3,2,1 | 9.9116 |
4 | 4,3,2,1 | 8.9488 |
5 | 5,4,3,2,1 | 8.5528 |
6 | 6,5,4,3,2, | 8.3599 |
7 | 7,6,5,4,3,2,1 | 8.2641 |
8 | 8,7,6,5,4,3,2,1 | 8.2247 |
9 | 9,8,7,6,5,4,3,2,1 | 8.2221 |
10 | 10,9,8,7,6,5,4,3,2,1 | 8.2942 |
11 | 11,10,9,8,7,6,5,4,3,2,1 | 8.4228 |
12 | 12, 11, 10,9,8,7,6,5,4,3,2,1 | 8.5617 |
13 | 13, 11, 10,9,8,7,6,5,4,3,2,1 | 8.6963 |
方法 | 预测误差(RMSE) | 备注 (学习参数) | ||
---|---|---|---|---|
最大值 | 均值 | 最小值 | ||
PLS | — | 10.92 | — | LV=7 |
KPLS | — | 8.179 | — | LV=8 |
GASEN-BPNN | 14.8580 | 12.0756 | 10.3971 | 隐含节点=17 |
GASEN-LSSVM | 10.1777 | 10.0149 | 9.7490 | (100,800) |
本文方法 | — | 7.163 | — |
表3 不同水泥抗压强度建模方法的统计结果
Table 3 Statistical results of different model approaches for concrete compressive strength
方法 | 预测误差(RMSE) | 备注 (学习参数) | ||
---|---|---|---|---|
最大值 | 均值 | 最小值 | ||
PLS | — | 10.92 | — | LV=7 |
KPLS | — | 8.179 | — | LV=8 |
GASEN-BPNN | 14.8580 | 12.0756 | 10.3971 | 隐含节点=17 |
GASEN-LSSVM | 10.1777 | 10.0149 | 9.7490 | (100,800) |
本文方法 | — | 7.163 | — |
编码序号 | 核参数 | 模型类型 | 预测误差 (RMSE) | 惩罚参数 (编码序号) |
---|---|---|---|---|
1 | 0.1 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 128.8 | 16~17 | ||
Best-Sub-sub | 128.8 | 17 | ||
2 | 1 | EnAll-sub-sub | 125.3 | all |
SEN-sub | 114.1 | 16~17 | ||
Best-Sub-sub | 114.1 | 17 | ||
3 | 100 | EnAll-sub-sub | 123.5 | all |
SEN-sub | 85.05 | 2~17 | ||
Best-Sub-sub | 90.46 | 6 | ||
4 | 1000 | EnAll-sub-sub | 128.3 | all |
SEN-sub | 85.02 | 5~17 | ||
Best-Sub-sub | 82.99 | 10 | ||
5 | 2000 | EnAll-sub-sub | 128.6 | all |
SEN-sub | 82.74 | 8~17 | ||
Best-Sub-sub | 82.62 | 11 | ||
6 | 4000 | EnAll-sub-sub | 128.7 | all |
SEN-sub | 82.74 | 8~17 | ||
Best-Sub-sub | 82.62 | 12 | ||
7 | 6000 | EnAll-sub-sub | 128.7 | all |
SEN-sub | 82.38 | 9~17 | ||
Best-Sub-sub | 83.51 | 13 | ||
8 | 8000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.43 | 10~17 | ||
Best-Sub-sub | 82.63 | 13 | ||
9 | 10000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.21 | 10~17 | ||
Best-Sub-sub | 82.87 | 13 | ||
10 | 20000 | EnAll-sub-sub | 128.85 | all |
SEN-sub | 82.29 | 12~17 | ||
Best-Sub-sub | 82.86 | 14 | ||
11 | 40000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.55 | 14~17 | ||
Best-Sub-sub | 82.85 | 15 | ||
12 | 60000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.58 | 15~17 | ||
Best-Sub-sub | 82.76 | 16 | ||
13 | 80000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.82 | 15~17 | ||
Best-Sub-sub | 82.85 | 16 | ||
14 | 16000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 84.76 | 17 | ||
Best-Sub-sub | 82.85 | 16~17 |
表4 DXN排放浓度SEN子模型的统计结果
Table 4 Statistical results of candidate SEN-sub model for DXN emission concentrate
编码序号 | 核参数 | 模型类型 | 预测误差 (RMSE) | 惩罚参数 (编码序号) |
---|---|---|---|---|
1 | 0.1 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 128.8 | 16~17 | ||
Best-Sub-sub | 128.8 | 17 | ||
2 | 1 | EnAll-sub-sub | 125.3 | all |
SEN-sub | 114.1 | 16~17 | ||
Best-Sub-sub | 114.1 | 17 | ||
3 | 100 | EnAll-sub-sub | 123.5 | all |
SEN-sub | 85.05 | 2~17 | ||
Best-Sub-sub | 90.46 | 6 | ||
4 | 1000 | EnAll-sub-sub | 128.3 | all |
SEN-sub | 85.02 | 5~17 | ||
Best-Sub-sub | 82.99 | 10 | ||
5 | 2000 | EnAll-sub-sub | 128.6 | all |
SEN-sub | 82.74 | 8~17 | ||
Best-Sub-sub | 82.62 | 11 | ||
6 | 4000 | EnAll-sub-sub | 128.7 | all |
SEN-sub | 82.74 | 8~17 | ||
Best-Sub-sub | 82.62 | 12 | ||
7 | 6000 | EnAll-sub-sub | 128.7 | all |
SEN-sub | 82.38 | 9~17 | ||
Best-Sub-sub | 83.51 | 13 | ||
8 | 8000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.43 | 10~17 | ||
Best-Sub-sub | 82.63 | 13 | ||
9 | 10000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.21 | 10~17 | ||
Best-Sub-sub | 82.87 | 13 | ||
10 | 20000 | EnAll-sub-sub | 128.85 | all |
SEN-sub | 82.29 | 12~17 | ||
Best-Sub-sub | 82.86 | 14 | ||
11 | 40000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.55 | 14~17 | ||
Best-Sub-sub | 82.85 | 15 | ||
12 | 60000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.58 | 15~17 | ||
Best-Sub-sub | 82.76 | 16 | ||
13 | 80000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 82.82 | 15~17 | ||
Best-Sub-sub | 82.85 | 16 | ||
14 | 16000 | EnAll-sub-sub | 128.8 | all |
SEN-sub | 84.76 | 17 | ||
Best-Sub-sub | 82.85 | 16~17 |
集成尺寸 | 集成子模型(核参数)的编码序号 | RMSE |
---|---|---|
2 | 2, 1 | 120.6 |
3 | 7, 2, 1 | 90.83 |
4 | 8, 7, 2,1 | 84.00 |
5 | 9,8,7,2,1 | 81.65 |
6 | 4,9,8,7,2, , 1 | 80.51 |
7 | 10,4,9, 8,7,2,1 | 80.14 |
8 | 3,10,4,9,8,7,2 ,1 | 80.63 |
9 | 3,5,10,4,9, 8, 7 ,2 ,1 | 80.25 |
10 | 3, 6, 5,10, 4,9, 8, 7, 2 ,1 | 80.01 |
11 | 3,11, 6, 5,10, 4,9, 8, 7, 2, 1 | 79.88 |
12 | 13 , 3 ,11, 6, 5,10, 4, 9,8, 7, 2 ,1 | 79.84 |
13 | 12,13,3,11,6,5,10, 4, 9 ,8 ,7 ,2, 1 | 79.80 |
表5 不同集成尺寸DXN排放浓度SEN模型的统计结果
Table 5 Statistical results of SEN model with different size for DXN emission concentrate
集成尺寸 | 集成子模型(核参数)的编码序号 | RMSE |
---|---|---|
2 | 2, 1 | 120.6 |
3 | 7, 2, 1 | 90.83 |
4 | 8, 7, 2,1 | 84.00 |
5 | 9,8,7,2,1 | 81.65 |
6 | 4,9,8,7,2, , 1 | 80.51 |
7 | 10,4,9, 8,7,2,1 | 80.14 |
8 | 3,10,4,9,8,7,2 ,1 | 80.63 |
9 | 3,5,10,4,9, 8, 7 ,2 ,1 | 80.25 |
10 | 3, 6, 5,10, 4,9, 8, 7, 2 ,1 | 80.01 |
11 | 3,11, 6, 5,10, 4,9, 8, 7, 2, 1 | 79.88 |
12 | 13 , 3 ,11, 6, 5,10, 4, 9,8, 7, 2 ,1 | 79.84 |
13 | 12,13,3,11,6,5,10, 4, 9 ,8 ,7 ,2, 1 | 79.80 |
方法 | 预测误差(RMSE) | 备注 (学习参数) | ||
---|---|---|---|---|
最大值 | 均值 | 最小值 | ||
PLS | — | 95.93 | — | LV=3 |
KPLS | — | 91.19 | — | LV=3, Ker=1 |
GASEN-BPNN | 381.2 | 225.0 | 143.6 | 隐含节点=17 |
GASEN-LSSVM | 113.8 | 91.39 | 84.17 | (4000, 3200) |
本文方法 | — | 79.80 | — |
表6 不同DXN排放浓度软测量模型的统计结果
Table 6 Statistical results of different soft sensor model for DXN emission concentrate
方法 | 预测误差(RMSE) | 备注 (学习参数) | ||
---|---|---|---|---|
最大值 | 均值 | 最小值 | ||
PLS | — | 95.93 | — | LV=3 |
KPLS | — | 91.19 | — | LV=3, Ker=1 |
GASEN-BPNN | 381.2 | 225.0 | 143.6 | 隐含节点=17 |
GASEN-LSSVM | 113.8 | 91.39 | 84.17 | (4000, 3200) |
本文方法 | — | 79.80 | — |
1 | Korai M S , Mahar R B , Uqaili M A . The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan[J]. Renew. Sustain. Energy Rev., 2017, 72: 338-353. |
2 | Zhou H , Meng A , Long Y Q . A review of dioxin-related substances during municipal solid waste incineration[J]. Waste Management, 2015, 36: 106-118. |
3 | Lu J W , Zhang S , Hai J , et al . Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions[J]. Waste Management, 2017, 69: 170-186. |
4 | Zhou Z , Zhao B , Kojima H , et al . Simple and rapid determination of PCDD/Fs in flue gases from various waste incinerators in China using DR-EcoScreen cells[J]. Chemosphere, 2014, 102: 24-30. |
5 | Koloma H , Takeuchi S , Iida M , et al . A sensitive, rapid, and simple DR-EcoScreen bioassay for the determination of PCDD/Fs and dioxin-like PCBs in environmental and food samples[J]. Environmental Science & Pollution Research, 2015, 22: 1-12. |
6 | Stamore B R . Modeling the formation of PCDD/F in solid waste incinerators[J]. Chemosphere, 2002, 47: 565-773. |
7 | Bunsan S W , Chen Y , Chen H W , et al . Modeling the dioxin emission of a municipal solid waste incinerator using neural networks[J]. Chemosphere, 2013, 92: 258-264. |
8 | Gullett B K , Oudejans L , Tabor D .Near-realtime combustion monitoring for PCDD/PCDF indicators by GC-REMPI-TOFMS[J]. Environmental Science & Technology, 2012, 46 (2): 923-928. |
9 | 郭颖, 陈彤, 杨杰, 等 . 基于关联模型的二口恶英在线检测研究[J]. 环境工程学报, 2014, 8(8): 3524-3529. |
Guo Y , Chen T , Yang J , et al . Study on on-line detection of dioxins based on correlation model[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3524-3529. | |
10 | 李阿丹, 洪伟, 王晶 . 激光解吸/激光电离-质谱法二口恶英及其关联物的在线检测[J]. 燕山大学学报, 2015, 39(6): 511-515. |
Li A D , Hong W , Wang J . Online detection of dioxin and dioxin-related substances using laser desoption/laser ionization-mass spectrometry[J]. Journal of Yanshan University, 2015, 39(6): 511-515. | |
11 | Pandelova M , Lenoir D , Schramm K W , Correlation between PCDD/F, PCB and PCBz in coal/waste combustion . Influence of various inhibitors[J]. Chemosphere, 2006, 62: 1196-1205. |
12 | Gullett B K , Oudejans L , Tabor D , et al . Near-real-time combustion monitoring for PCDD/PCDF indicators by GC–REMPI–TOFMS[J]. Environmental Engineering Science, 2012, 46: 923-928. |
13 | Guo Z H , Tang J , Qiao J F . Mathematic simulation model of dioxin emission concentration of municipal solid waste incineration based on Aspen-plus software[C]//The 37th Chinese Control Conference. USA: IEEE Press, 2018. |
14 | Wang W , Chai T Y , Yu W , Modeling component concentrations of sodium aluminate solution via hammerstein recurrent neural networks [J]. IEEE Transactions on Control Systems Technology, 2012, 20: 971-982. |
15 | Tang J . Chai T Y, Yu W, et al . Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information[J]. IEEE Transactions on Automation Science & Engineering, 2013, 10: 726-740. |
16 | Kano M , Fujwara K . Virtual sensing technology in process industries: trends & challenges revealed by recent industrial applications[J]. Journal of Chemical Engineering of Japan, 2013, 46: 1-17. |
17 | Tang J , Liu Z , Zhang J , et al . Kernel latent feature adaptive extraction and selection method for multi-component non-stationary signal of industrial mechanical device[J]. Neurocomputing, 2016, 216(C): 296-309. |
18 | Tang J , Chai T Y , Yu W , et al . Feature extraction and selection based on vibration spectrum with application to estimate the load parameters of ball mill in grinding process[J]. Control Engineering Practice, 2012, 20(10): 991-1004. |
19 | Zhou Z H , Wu J , Tang W . Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137(1/2): 239-263. |
20 | 汤健, 柴天佑, 丛秋梅, 等 . 选择性融合多尺度筒体振动频谱的磨机负荷参数建模[J]. 控制理论与应用,2015, 32(12): 1582-1591. |
Tang J , Chai T Y , Cong Q M , et al . Modeling mill load parameters based on selective fusion of multi-scale shell vibration frequency spectrum[J]. Control Theory & Application, 2015, 32(12): 1582-1591. | |
21 | 汤健, 柴天佑, 丛秋梅, 等 . 基于EMD和选择性集成学习算法的磨机负荷参数软测量[J]. 自动化学报, 2014, 40(9): 1853-1866. |
Tang J , Chai T Y , Cong Q M , et al . Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm[J]. Acta Automatica Sinica, 2014, 40(9): 1853-1866. | |
22 | Tang J , Yu W , Chai T Y , et al . Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion[J]. Mechanical Systems & Signal Processing, 2016, 66/67: 485-504. |
23 | Tang J , Qiao J F , Wu Z W , et al . Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features[J]. Mechanical Systems and Signal Processing, 2018, 99: 142-168. |
24 | Tang J , Zhang J , Wu Z W , et al . Modeling collinear data using double-layer GA-based selective ensemble kernel partial least squares algorithm [J]. Neurocomputing, 2017, 219: 248-262. |
25 | Lv Y , Liu J , Yang T . A novel least squares support vector machine ensemble model for NO x , emission prediction of a coal-fired boiler[J]. Energy, 2013, 55(1): 319-329. |
26 | Padilha C A D A , Barone D A C , Neto A D D . A multi-level approach using genetic algorithms in an ensemble of least squares support vector machines[J]. Knowledge-Based Systems, 2016, 106(C): 85-95. |
27 | 汤健, 乔俊飞, 柴天佑, 等 . 基于虚拟样本生成技术的多组分机械信号建模[J]. 自动化学报, 2018, 44(9): 1569-1590. |
Tang J , Qiao J F , Chai T Y , et al . Modeling multiple components mechanical signals by means of virtual sample generation technique[J]. Acta Automatica Sinica, 2018, 44(9): 1569-1590. | |
28 | Tang J , Qiao J F , Liu Z , et al . Mechanism characteristic analysis and soft measuring method review for ball mill load based on mechanical vibration and acoustic signals in the grinding process[J]. Minerals Engineering, 2018, 128: 294-311. |
29 | Yeh I C . Modeling of strength of high performance concrete using artificial neural networks [J]. Cement and Concrete Research, 1998, 28(12): 1797-1808. |
30 | Tang J , Yu W , Chai T Y , et al . On-line principal component analysis with application to process modeling[J]. Neurocomputing, 2012, 82(1): 167-178. |
31 | Chang N B , Huang S H . Statistical modelling for the prediction and control of PCDDs and PCDFs emissions from municipal solid waste incinerators[J]. Waste Management & Research, 1995, 13(4): 379-400. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[3] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[6] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[7] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[8] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[9] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[10] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[11] | 刘定平, 陈爱桦, 张向阳, 何文浩, 王海. 铝灰半干法水解脱氮研究[J]. 化工学报, 2023, 74(3): 1294-1302. |
[12] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[13] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[14] | 罗欣宜, 冯超, 刘晶, 乔瑜. 污泥不同热处理工艺产物磷的浸出回收实验研究[J]. 化工学报, 2022, 73(9): 4034-4044. |
[15] | 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||