化工学报 ›› 2014, Vol. 65 ›› Issue (7): 2588-2619.DOI: 10.3969/j.issn.0438-1157.2014.07.020
张照强, 朱万诚
收稿日期:
2014-03-19
修回日期:
2014-04-02
出版日期:
2014-07-05
发布日期:
2014-07-05
通讯作者:
朱万诚
基金资助:
国家自然科学基金项目(21276141);化学工程联合国家重点实验室开放课题(SKL-ChE-12A05)。
ZHANG Zhaoqiang, ZHU Wancheng
Received:
2014-03-19
Revised:
2014-04-02
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the National Natural Science Foundation of China(21276141).
摘要: 纳米线/棒/管/带/晶须等纳米材料由于其独特的一维(1D)结构及在电子、光学、催化、能源、环境和医药等领域的广泛应用前景而成为研究的热点之一,而硼酸盐则由于其多变的组成及其在众多领域内的独特性能及应用受到了广泛关注。重点围绕碱/碱土金属硼酸盐,从基础热力学、控制合成、应用开发、工程实践等方面对1D纳米硼酸盐材料的最新研究成果进行了综述。此外,对1D纳米硼酸镁的熔融盐(MSS)、化学气相沉积(CVD)等传统高温工艺及本课题组多年来所致力的水热-热转化(HTC)法制备进行了客观比较,结果表明,HTC法在形貌控制合成乃至中试放大等方面具有一定优势。最后以硼酸镁纳米晶须为例,从前述4个方面对目前1D纳米硼酸盐研究中所存在的问题、尤其是针对腐蚀性技术瓶颈的绿色水热合成及其工程实践对策进行了分析和展望。
中图分类号:
张照强, 朱万诚. 一维纳米硼酸盐研究进展:从基础热力学到工程实践[J]. 化工学报, 2014, 65(7): 2588-2619.
ZHANG Zhaoqiang, ZHU Wancheng. Advances in one-dimensional nanostructured borates:from fundamental thermodynamics to engineering practice[J]. CIESC Journal, 2014, 65(7): 2588-2619.
[1] | Ding Y, Wang Z L. Structure analysis of nanowires and nanobelts by transmission electron microscopy[J]. J. Phys. Chem. B, 2004, 108: 12280-12291 |
[2] | Zhu Wancheng(朱万诚). Study on controllable synthesis and mechanism of one-dimensional magnesium borates nanomaterials [D]. Beijing: Tsinghua University, 2008:18 |
[3] | Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Adv. Mater., 2003, 15(5): 353-389 |
[4] | Byrne M T, Gun'ko Y K. Recent advances in research on carbon nanotube-polymer composites[J]. Adv. Mater., 2010, 22(15): 1672-1688 |
[5] | Su D S, Schlogl R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications[J]. Chem. Sus. Chem., 2010, 3(2): 136-168 |
[6] | Liu C, Li F, Ma L P, Cheng H M. Advanced materials for energy storage[J]. Adv. Mater., 2010, 22(8): E28-E62 |
[7] | Han X D, Zhang Z, Wang Z L. Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy[J]. Nano, 2007, 2(5): 249-271 |
[8] | Espinosa H D, Bernal R A, Minary-Jolandan M. A review of mechanical and electromechanical properties of piezoelectric nanowires[J]. Advanced Materials, 2012, 24(34): 4656-4675 |
[9] | Tao Xinyong, Li Xiaodong. Catalyst-free synthesis, structural, and mechanical characterization of twinned Mg2B2O5 nanowires[J]. Nano Lett., 2008, 8: 505-510 |
[10] | Lu J G, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications[J]. Materials Science and Engineering: R: Reports, 2006, 52(1/2/3): 49-91 |
[11] | Zhu W C, Xiang L, Zhang Q, Zhang X Y, Hu L, Zhu S L. Morphology preservation and crystallinity improvement in the thermal conversion of the hydrothermal synthesized MgBO2(OH) nanowhiskers to Mg2B2O5 nanowhiskers[J]. J. Cryst. Growth, 2008, 310(18): 4262-4267 |
[12] | Zhu W C, Zhu S L, Xiang L. Successive effect of rolling up, oriented attachment and Ostwald ripening on the hydrothermal formation of szaibelyite MgBO2(OH) nanowhiskers[J]. Cryst. Eng. Comm., 2009, 11(9): 1910-1919 |
[13] | Zhu W C, Xiang L, He T B, Zhu S L. Hydrothermal synthesis and characterization of magnesium borate hydroxide nanowhiskers[J]. Chemistry Letters, 2006, 35(10): 1158-1159 |
[14] | Zhu W C, Zhang Q, Xiang L, Wei F, Sun X T, Piao X L, Zhu S L. Flux-assisted thermal conversion route to pore-free high crystallinity magnesium borate nanowhiskers at a relatively low temperature[J]. Crystal Growth & Design, 2008, 8(8): 2938-2945 |
[15] | Xie Xiande(谢先徳), Zheng Mianping(郑绵平), Liu Laibao(刘来保). Borates Minerals(硼酸盐矿物)[M]. Beijing: Science Press, 1965 |
[16] | Parzych G, Mikhailova D, Oswald S, Eckert J R, Ehrenberg H. Study of the conversion reaction mechanism for copper borate as electrode material in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(8): A898-A904 |
[17] | Sohn Y. Photoluminescence imaging of EuBO3, TbBO3, Eu(Ⅲ)-BOx, and Tb(Ⅲ)-BOx nanostructures[J]. Ceramics International, 2014, 40(1): 2467-2475 |
[18] | Ma R, Bando Y, Sato T. Nanowires of metal borates[J]. Appl. Phys. Lett., 2002, 81: 3467-3469 |
[19] | Ma R, Bando Y, Golberg D, et al. Nanotubes of magnesium borate[J]. Angew. Chem. Int. Ed., 2003, 42: 1836-1838 |
[20] | Zhang Jiang(张弜), Zhao Yanming(赵彦明). Synthesis, structure and growth mechanism of magnesium borate nanobelts[J]. Acta Physico-Chimica Sinica(物理化学学报), 2006, 22(1): 110-113 |
[21] | Suganuma K, Fujita T, Suzuki N, et al. Aluminium composites reinforced with a new aluminium borate whisker[J]. Journal of Materials Science Letters, 1990: 633-635 |
[22] | Li J, Wang F, Zhang Y, Wang M, Wang H. Microstructure and mechanical properties of magnesium matrix composite reinforced with magnesium borate whisker[J]. Journal of Composite Materials, 2012, 46(24): 3011-3016 |
[23] | Zheng Mingyi, Wu Kun, Liang Hancen, Kamado S, Kojima Y. Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites[J]. Materials Letters, 2002, 57: 558-564 |
[24] | Li J, Gao S Y, Xia S P, Li B, Hu R Z. Thermochemistry of hydrated magnesium borates[J]. J. Chem. Thermodynamics, 1997, 29: 491-497 |
[25] | Li J, Gao S Y, Li B. Thermochemistry of hydrated potassium and sodium borates[J]. J. Chem. Thermodynamics, 1998, 30: 425-430 |
[26] | Li J, Gao S Y, Li B. Thermochemistry of hydrated lithium borates[J]. J. Chem. Thermodynamics, 1998, 30: 681-688 |
[27] | Zhu L X, Yue T, Gao S Y, Liu Z H, Xia S P. Thermochemistry of rubidium calcium octaborate dodecahydrate[J]. Thermochimica Acta, 2003, 402(1): 241-245 |
[28] | Huang Hongsheng(黄宏升). Synthesis, characterization and thermochemistry of strontium and barium borates[D]. Shanxi: Shanxi Normal University, 2007 |
[29] | Zuo Chuanfeng(左传凤). Synthesis and thermochemisty of the hydrated calcium borates[D]. Shanxi: Shanxi Normal University, 2005 |
[30] | Li Lianqing(李连庆). Synthesis, characterization and crystal structure of novel hydrated alkali metals borates[D]. Shanxi: Shanxi Normal University, 2006 |
[31] | Li P, Liu Z H. Hydrothermal synthesis, characterization, and thermodynamic properties of a new lithium borate, Li3B5O8(OH)2[J]. J. Chem. Eng. Data, 2010, 55: 2682-2686 |
[32] | Liu Z H, Zuo C F, Li S Y. Synthesis and thermochemistry of 2CaO·B2O3·H2O[J]. Thermochimica Acta, 2004, 424(1/2): 59-62 |
[33] | Liu Z H, Wang Y, Huang H S. Synthesis and thermochemistry of BaB2O4· 4H2O and b-BaB2O4[J]. J. Chem. Eng. Data, 2007, 52: 487-490 |
[34] | Liu Z H, Huang H S. Synthesis and thermochemistry of SrB2O4·4H2O and SrB2O4[J]. Thermochimica Acta, 2006, 448: 59-62 |
[35] | Rama Kumar A, Alexandra N, Hillary T B, William H C. Thermochemistry and aqueous solubilities of hydrotalcite-like solids[J]. Science, 2002, 296(26): 721-723 |
[36] | Mostafa A T M G, Eakman J M, Yarbro S L. Prediction of standard heats and Gibbs free energies formation of solid inorganic salts from group contributions[J]. Ind. Eng. Chem. Res., 1995, 34: 4577-4582 |
[37] | Li J, Li B, Gao S. Calculation of thermodynamic properties of hydrated borates by group contribution method[J]. Phys. Chem. Minerals, 2000, 27: 342-346 |
[38] | Zhu Wancheng(朱万诚), Zhang Xueyi(张学一), Zhang Qiang(张强), Xiang Lan(向兰), Zhu Shenlin(朱慎林). Subunit contribution model for thermodynamic properties of borates and its application in hydrothermal synthesis of MgBO2(OH) nanowhiskers[J]. CIESC Journal(化工学报), 2013, 64(2): 443-451 |
[39] | Liu Z H, Hu M C. New synthetic method and thermochemistry of szaibelyite[J]. Thermochimica Acta, 2004, 411: 27-29 |
[40] | Derun E M, Senberber F T. Characterization and thermal dehydration kinetics of highly crystalline mcallisterite, synthesized at low temperatures [J]. The Scientific World Journal, 2014: 985185(article ID) |
[41] | Kitamura T, Sakane K, Wada H. Formation of needle crystals of magnesium pyroborate[J]. J.Mater. Sci. Lett., 1988, 7: 467-469 |
[42] | Sakane K, Kitamura T, Wada H, et al. Effect of mixing state of raw material in the preparation of Mg2B2O5 whiskers[J]. Adv. Powder Technol., 1992, 3(1): 39-46 |
[43] | Duan Yu(段玉), Lu Guimin(路贵民), Song Xingfu(宋兴福), Sun Shuying(孙淑英), Yu Jianguo(于建国). Preparation and growth mechanism of magnesium borate whiskers with high aspect ratio[J]. Journal of Inorganic Materials(无机材料学报), 2011, 26(4): 364-368 |
[44] | Gao Feng(高枫), Fan Jungang(范俊刚), Sun Huaiyu(孙怀宇), Wang Zhumin(王祝敏), Pei Shihong(裴世红). The preparation and characterization of magnesium borate whiskers[J]. Applied Chemical Industry(应用化工), 2010, 39(10): 1537-1538 |
[45] | Wang Licong(王俐聪), Zhang Yi(张旖), Wang Yuqi(王玉琪), Huang Xiping(黄西平), Zhang Yushan(张雨山). Effect of calcination conditions on composition and morphology of magnesium borate whisker[J]. Inorganic Chemical Industry(无机盐工业), 2010, 42(5): 22-23 |
[46] | Wang Licong(王俐聪), Wang Yuqi(王玉琪), Zhang Yushan(张雨山), Zhang Yi(张旖), Huang Xiping(黄西平), Zhang Jiakai(张家凯). Study on scale up experiment of magnesium borate (Mg2B2O5) whisker and its application[J]. Shandong Chemical Industry(山东化工), 2011, 40(7): 5-8 |
[47] | Zhang Yi(张旖), Wang Licong(王俐聪), Wang Yuqi(王玉琪), Zhang Yushan(张雨山), Huang Xiping(黄西平). Preparation of magnesium borate (Mg2B2O5) whisker using bitter brine[J]. Chemical Industry and Engineering(化学工业与工程), 2010, 27(2): 128-131 |
[48] | Bian Shaoju(边绍菊), Li Jie(李洁), Nai Xueying(乃学瑛), Li Wu(李武). Preparation of Mg2B2O5 whisker and preliminary study on its growth mechanism[J]. Journal of Saltlake Research(盐湖研究), 2007, 15(2): 45-49 |
[49] | Jin Zhiliang(靳治良), Li Wu(李武), Zhang Zhihong(张志宏). Study on synthesis of magnesium borate whisker[J]. Inorganic Chemicals Insustry(无机盐工业), 2003, 35(3): 22-24 |
[50] | Li Y, Fan Z, Lu J G, et al. Synthesis of magnesium borate (Mg2B2O5) nanowires by chemical vapor deposition method[J]. Chem. Mater., 2004, 16(13): 2512-2514 |
[51] | Li Y, Chang R P H. Synthesis and characterization of aluminum borate (Al18B4O33, Al4B2O9) nanowires and nanotubes[J]. Materials Chemistry and Physics, 2006, 97(1): 23-30 |
[52] | Sears G W. A mechanism of whisker growth[J]. Acta Metall., 1955, 3(4): 367-369 |
[53] | Luo Junjie(罗俊杰). Synthesis and rare earth doping of GaMgBO4 nanorods[J]. Journal of Yanan University:Natural Science Edition(延安大学学报:自然科学版), 2013, 32: 45-47 |
[54] | Li S, Xu D, Shen H, Zhou J, Fan Y. Synthesis and Raman properties of magnesium borate micro/nanorods[J]. Materials Research Bulletin, 2012, 47(11): 3650-3653 |
[55] | Zhu W C, Zhang Q, Xiang L, Zhu S L. Green co-precipitation byproduct-assisted thermal conversion route to submicron Mg2B2O5 whiskers[J]. Cryst. Eng. Comm., 2011, 13(5): 1654-1663 |
[56] | Liu X F, Zhu W C, Cui X L, Liu T, Zhang Q. Facile thermal conversion route synthesis, characterization, and optical properties of rod-like micron nickel borate[J]. Powder Technology, 2012, 222: 160-166 |
[57] | Li R, Bao L, Li X. Synthesis, structural, optical and mechanical characterization of SrB2O4 nanorods[J]. Cryst. Eng. Comm., 2011, 13(19): 5858-5862 |
[58] | Chen Aimin(陈爱民), Xu Shufen(徐淑芬), Ni Zheming(倪哲明). Synthesis, structure and growth mechanism of aluminum borate nanorods[J]. Acta Phys.Chim. Sin.(物理化学学报), 2009, 25(12): 2570-2574 |
[59] | Chen Aimin(陈爱民), Hu Fengchao(胡锋超), Gu Pei(顾培), Ni Zheming(倪哲明). Sol-gel synthesis, characterization of nickel borate nanorods[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2011, 27(1): 30-34 |
[60] | Menaka Sharma S, Ramanujachary K V, Lofland S E, Ganguli A K. Controlling the size and morphology of anisotropic nanostructures of nickel borate using microemulsions and their magnetic properties[J]. Journal of Colloid and Interface Science, 2011, 360(2): 393-397 |
[61] | Zheng Y H, Wang Z C, Tian Y M, Qu Y N, Li S L, An D M, Chen X, Guan S. Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349(1/2/3): 156-161 |
[62] | Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology [J]. Prog. Cryst. Growth Charact. Mater., 2007, 53: 117-166 |
[63] | Xu Bingshe, Li Tianbao, Zhang Yan, Zhang Zhuxia, Liu Xuguang, Zhao Junfu. New synthetic route and characterization of magnesium borate nanorods[J]. Crystal Growth & Design, 2008, 8(4): 1218-1222 |
[64] | Liu Jinping, Li Yuanyuan, Huang Xintang, Li Zikun, Li Guangyun, Zeng Haibo. Hydrothermal synthesis of single-crystal szaibelyite MgBO2(OH) nanobelt as a new host material for red-emitting rare-earth ions[J]. Chem. Mater., 2008, 20: 250-257 |
[65] | Zhu W C, Xiang L, Zhang X Y, Zhu S L. Influence of process parameters on hydrothermal formation of magnesium borate hydroxide nanowhiskers[J]. Mater. Res. Innov., 2007, 11(4): 188-192 |
[66] | Zhu W C, Zhang X Y, Xiang L, Zhu S L. Hydrothermal formation of the head-to-head coalesced szaibelyite MgBO2(OH) nanowires[J]. Nanoscale Research Letters, 2009, 4(7): 724-731 |
[67] | Zhu W C, Zhang Q, Xiang L, Zhu S L. Repair the pores and preserve the morphology: formation of high crystallinity 1D nanostructures via the thermal conversion route[J]. Crystal Growth & Design, 2011, 11(3): 709-718 |
[68] | Zhu W C, Wang R G, Zhu S L, Zhang L L, Cui, X L, Zhang H, Piao X L, Zhang Q. Green noncorrosive and easy scale-up hydrothermal-thermal conversion: a feasible solution to mass production of magnesium borate nanowhiskers[J]. ACS Sustainable Chemistry & Engineering, 2014, DOI: 10.1021/sc400481j |
[69] | Song S J, Nai X Y, Li W, Zhu C C, Meng Q F. Hydrothermal synthesis of calcium borate whiskers[J]. Advanced Materials Research, 2011, 399/400/401: 693-697 |
[70] | Bao L H, Xu Z H, Li R, Li X D. Catalyst-free synthesis and structural and mechanical characterization of single crystalline Ca2B2O5·H2O nanobelts and stacking faulted Ca2B2O5 nanogrooves[J]. Nano Letters, 2010, 10(1): 255-262 |
[71] | Zhu W C, Zhang X, Wang X L, Zhang H, Zhang Q, Xiang L. Short belt-like Ca2B2O5·H2O nanostructures: hydrothermal formation, FT-IR, thermal decomposition, and optical properties[J]. Journal of Crystal Growth, 2011, 332(1): 81-86 |
[72] | Zhu W C, Wang X L, Zhang X, Zhang H, Zhang Q. Hierarchical laminar superstructures of rhombic priceite (Ca4B10O19·7H2O): facile hydrothermal synthesis, shape evolution, optical, and thermal decomposition properties[J]. Crystal Growth & Design, 2011, 11(7): 2935-2941 |
[73] | Li Rui, Tao Xinyong, Li Xiaodong. Low temperature, organic-free synthesis of Ba3B6O9(OH)6 nanorods and β-BaB2O4 nanospindles[J]. Journal of Materials Chemistry, 2009, 19: 983-987 |
[74] | Qu Guangyuan, Hu Zhifang, Wang Yipei, Yang Qing, Tong Limin. Synthesis of optical-quality single-crystal β-BaB2O4 microwires and nanowires[J]. Advanced Functional Materials, 2013, 23(10): 1232-1237 |
[75] | He Guiping(何贵平), Zhang Jiang(张弜), Yao Ruohe(姚若河). Preparation, structure and photoluminescence of Er3+ and Ce3+/Ce4+ doped b-BaB2O4 nanorods[J]. Acta Phys. -Chim. Sin.(物理化学学报), 2010, 26(3): 685-690 |
[76] | Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology[J]. Prog. Cryst. Growth Charact. Mater., 2007, 53: 117-166 |
[77] | Shen X P, Miao H J, Zhao H, Xu Z. Synthesis, characterization and magnetic properties of Co3O4 nanotubes[J]. Applied Physics A, 2007, 91(1): 47-51 |
[78] | Fang Y P, Xu A W, You L P, Song R Q, Yu J C, Zhang H X, Li Q, Liu H Q. Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes[J]. Advanced Functional Materials, 2003, 13(12): 955-960 |
[79] | Yan T, Zhang D, Shi L, Li H. Facile synthesis, characterization, formation mechanism and photoluminescence property of Eu2O3 nanorods[J]. Journal of Alloys and Compounds, 2009, 487(1): 483-488 |
[80] | Zhu W C, Zhang L Y, Cui X L, Zhang Q. Efficient synthesis of orthorhombic lithium borate hydroxide micro-rods and their thermal conversion to lithium borate[J]. Powder Technology, 2011, 210(1): 67-72 |
[81] | Kumari L, Li W Z, Kulkarni S, Wu K H, Chen W, Wang C, Vannoy C H, Leblanc R M. Effect of surfactants on the structure and morphology of magnesium borate hydroxide nanowhiskers synthesized by hydrothermal route[J]. Nanoscale Research Letters, 2009, 5(1): 149-157 |
[82] | Liu N, Zhao D, Yu L X, Zheng K Z, Qin W P. Controlled synthesis and photoluminescence of europium doped barium borate nanorods, nanowires, and flower-like assemblies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363(1/2/3): 124-129 |
[83] | Shi X X, Li M, Yang H, Chen S P, Yuan L J, Zhang K L, Sun J T. PEG-300 assisted hydrothermal synthesis of 4ZnO·B2O3·H2O nanorods[J]. Materials Research Bulletin, 2007, 42(9): 1649-1656 |
[84] | Zhou Jie(周杰), Su Dagen(苏达根), Zhong Mingfeng(钟明峰). Hydrothermal synthesis and flame-retardant properties of 4ZnO·B2O3·H2O microrods[J]. Journal of South China University of Technology: Natural Science Edition(华南理工大学学报: 自然科学版), 2007, 35(12): 107-110 |
[85] | Huang Hongsheng(黄宏升). Review of the progress of borate luminescent materials[J]. Journal of Ankang University(安康学院学报), 2011, 23: 92-94 |
[86] | Pan G H, Song H W, Bai X, Liu Z X, Yu H Q, Di W H, Li S W, Fan L B, Ren X G, Lu S Z. Novel energy-transfer route and enhanced luminescent properties in YVO4:Eu3+/YBO3:Eu3+ composite[J]. Chem. Mater., 2006, 18: 4526-4532 |
[87] | Song H W, Pan G H, Bai X, Dong B, Zhang X T, Hark S K. Electrospinning preparation, structure, and photoluminescence properties of YBO3:Eu3+ nanotubes and nanowires[J]. Chem. Mater., 2008, 20: 4762-4767 |
[88] | Sun H T, Shimaoka F, Fujii M, et al. One-step synthesis and near-infrared luminescent properties of Er3+ and Ni2+ doped single-crystalline Al18B4O33 nanorods [J]. Nanotechnology, 2009, 20(3): 35-39 |
[89] | Wei Zhenggui, Sun Lingdong, Liao Chunsheng, et al. Synthesis and size dependent luminescent properties of hexagonal (Y ,Gd)BO3:Eu nanocrystals [J]. Journal of Materials Chemistry, 2002, 12(12): 3665-3670 |
[90] | Jia G,You H P, Song Y H, et al. Facile chemical conversion synthesis and luminescence properties of uniform Ln3+(Ln=Eu, Tb)-doped NaLuF4 nanowires and LuBO3 microdisks[J]. Inorganic Chemistry, 2009, 48(21):10193-10201 |
[91] | Liu Jichun(刘继春), Yu Zhuoli(于卓立), Chen Liang(陈梁), et al. Halogen-free flame retardant Mg(OH)2-Al(OH)3-MRP/HIPS composites[J]. Acta Materiae Compositae Sinica(复合材料学报), 2013, 30: 35-43 |
[92] | Laoutid F, Bonnaud L, Alexandre M, et al. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites[J]. Materials Science and Engineering: R: Reports, 2009, 63(3): 100-125 |
[93] | Marosfoi B B, Garas S, Bodzay B, et al. Flame retardancy study on magnesium hydroxide associated with clays of different morphology in polypropylene matrix[J]. Polymers for Advanced Technologies, 2008, 19(6): 693-700 |
[94] | Beyer G. Flame retardant properties of EVA-nanocomposites and improvements by combination of nanofillers with aluminium trihydrate[J]. Fire and Materials, 2001, 25(5): 193-197 |
[95] | Gui H, Zhang X H, Dong W F, et al. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites[J]. Polymer, 2007, 48(9): 2537-2541 |
[96] | Kiliaris P, Papaspyrides C D. Polymer/layered silicate(clay) nanocomposites: an overview of flame retardancy[J]. Progress in Polymer Science, 2010, 35(7): 902-958 |
[97] | Kim S. Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(9): 936-944 |
[98] | Yeh J T, Yang H M, Huang S S. Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene[J]. Polymer Degradation and Stability, 1995, 50(2): 229-234 |
[99] | Keszei S, Anna P, Marosi G, et al. Surface modified aluminium hydroxide in flame retarded noise damping sheets[J]. Macromolecular Symposia, 2003, 202: 235-243 |
[100] | Anna P, Zimonyi E, Marton A, et al. Surface treated cellulose fibres in flame retarded PP composites[J]. Macromolecular Symposia, 2003, 202: 245-254 |
[101] | Bertalan G, Marosi G, Anna P, et al. Role of interface modification in filled and flame-retarded polymer systems[J]. Solid State Ionics, 2001, 141: 211-215 |
[102] | Chen T, Deng J C, Wang L S, Feng G. Preparation and characterization of nano-zinc borate by a new method[J]. Journal of Materials Processing Technology, 2009, 209(8): 4076-4079 |
[103] | Li Jiusheng(李久盛), Hao Lifeng(郝利峰), Xu Xiaohong(徐小红), Ren Tianhui(任天辉). Research on preparation and tribological properties of calcium borate nanoparticles in the liquid form[J]. Nano-processing Technique(纳米加工工艺), 2011, 8(4): 40-44 |
[104] | Zhu W C, Li G D, Zhang Q, Xiang L, Zhu S L. Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement[J]. Powder Technology, 2010, 203(2): 265-271 |
[105] | Li J G, Wang F F, Zhang Y J, Wang M L, Wang H W. Microstructure and mechanical properties of magnesium matrix composite reinforced with magnesium borate whisker[J]. Journal of Composite Materials, 2012, 46(24): 3011-3016 |
[106] | Tjong S C, Jiang W. Mechanical and thermal behavior of polycarbonate composites reinforced with aluminum borate whiskers[J]. Journal of Applied Polymer Science, 1999, 73(11): 2247-2253 |
[107] | Tao X Y, Wang X N, Li X D. Nanomechanical characterization of one-step combustion-synthesized Al4B2O9 and Al18B4O33 nanowires[J]. Nano Letters, 2007, 7(10): 3172-3176 |
[108] | Thind K S, Sharma G, Rajendran V, et al. Structural and acoustic investigations of calcium borate glasses[J]. Physica Status Solidi (a), 2006, 203(10): 2356-2364 |
[109] | Cao Mingli(曹明莉), Wei Jianqiang(位建强). Research progress of CaCO3 whisker and application in composite materials[J]. New Chemical Materials(化工新型材料), 2010, 38: 11-13 |
[110] | Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: a review[J]. RSC Advances, 2012, 2(20): 7617-7632 |
[111] | Dong Y Z, Zhao Y M, Shi Z D, An X N, Fu P, Chen L. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material[J]. Electrochimica Acta, 2008, 53(5): 2339-2345 |
[112] | Janssen Y, Middlemiss D S, Bo S H, Grey C P, Khalifah P G. Structural modulation in the high capacity battery cathode material LiFeBO3[J]. Journal of the American Chemical Society, 2012, 134(30): 12516-12527 |
[113] | Rowsell J L C, Gaubicher J, Nazar L F. A new class of materials for lithium-ion batteries iron(Ⅲ) borates[J]. Journal of Power Sources, 2001: 254-257 |
[114] | Okada S, Tonuma T, Uebo Y, Yamaki J I. Anode properties of calcite-type MBO3 (M:V, Fe)[J]. Journal of Power Sources, 2003, 119/120/121: 621-625 |
[115] | Seo D H, Park Y U, Kim S W, Park I, Shakoor R A, Kang K. First-principles study on lithium metal borate cathodes for lithium rechargeable batteries[J]. Physical Review B, 2011, 83(20): 205127 |
[116] | Chen L, Zhao Y M, An X N, Liu J M, Dong Y Z, Chen Y H, Kuang Q. Structure and electrochemical properties of LiMnBO3 as a new cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2010, 494(1/2): 415-419 |
[117] | Wang S M, Huang X J, Chen L Q. Activation of LiMnBO glass as cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2000, 10(6): 1465-1467 |
[118] | Shi Lingbin(石玲斌). Preparation of zinc borate[J]. Journal of Kunming University of Science and Technology: Science and Technology(昆明理工大学学报: 理工版), 2003, 28(2): 14-16 |
[119] | Wang Yuhong (王玉红). Study on synthesis and scale up of nanoparticles of calcium carbonate by high gravity reaction precipitation[D]. Beijing: Beijing University of Chemical Technology, 1998 |
[120] | Zhu Wancheng(朱万诚), Chen Jianfeng(陈建峰), Wang Yuhong(王玉红). Synthesis and characterization of ultra-fine calcium carbonate whiskers in high-gravity[J]. Chinese Journal of Chemical Physics(化学物理学报), 2004, 17(2): 175-178 |
[121] | Zhu Wancheng(朱万诚), Chen Jianfeng(陈建峰), Wang Yuhong(王玉红). Experimental study on the synthesis of ultra-fine calcium carbonate whiskers in rotating packed bed reactor[J]. Material Science & Technology(材料科学与工艺), 2005, 13(1): 30-33 |
[122] | Huang J Q, Zhang Q, Zhao M Q, et al. A review of the large-scale production of carbon nanotubes: the practice of nanoscale process engineering[J]. Chinese Science Bulletin, 2012, 57(2/3): 157-166 |
[123] | Zhang Q, Huang J Q, Zhao M Q, et al. Carbon nanotube mass production: principles and processes[J]. Chem. Sus. Chem., 2011, 4(7): 864-889 |
[124] | Zhang Q, Zhao M Q, Huang J Q, et al. Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition[J]. Carbon, 2010, 48(4): 1196-1209 |
[125] | Wei F, Zhang Q, Qian W Z, et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis[J]. Powder Technology, 2008, 183(1): 10-20 |
[1] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[7] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[8] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[9] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||