化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3921-3930.DOI: 10.11949/0438-1157.20230461
收稿日期:
2023-05-12
修回日期:
2023-09-02
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
齐聪
作者简介:
齐聪(1983—),男,博士,副教授,qicong@cumt.edu.cn
基金资助:
Cong QI(), Zi DING, Jie YU, Maoqing TANG, Lin LIANG
Received:
2023-05-12
Revised:
2023-09-02
Online:
2023-09-25
Published:
2023-11-20
Contact:
Cong QI
摘要:
为提高太阳能温差发电效率,设计了一种基于选择吸收纳米薄膜新型温差发电装置。研究了光照强度、光照角度对其性能的影响,并与基于商用太阳能涂料的温差发电器进行了对比研究。结果表明:与基于商用太阳能涂料的温差发电器相比,采用选择吸收纳米薄膜作为吸热层可有效提高系统的输出功率,温差发电片的冷热端温差可提高1~2℃,且在低光照强度条件下最高可提高42.6%的输出功率。
中图分类号:
齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930.
Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm[J]. CIESC Journal, 2023, 74(9): 3921-3930.
实验次数 | a/Ω | b/(V/℃) |
---|---|---|
平均值 | 7.48 | 0.06521 |
第一次 | 7.55 | 0.06545 |
第二次 | 7.62 | 0.06434 |
第三次 | 7.43 | 0.06647 |
第四次 | 7.51 | 0.06369 |
第五次 | 7.29 | 0.06611 |
表1 TEG1-241性能参数
Table 1 Performance parameters of TEG1-241
实验次数 | a/Ω | b/(V/℃) |
---|---|---|
平均值 | 7.48 | 0.06521 |
第一次 | 7.55 | 0.06545 |
第二次 | 7.62 | 0.06434 |
第三次 | 7.43 | 0.06647 |
第四次 | 7.51 | 0.06369 |
第五次 | 7.29 | 0.06611 |
实验变量 | 不确定度 |
---|---|
T/℃ | ±0.1% |
U/V | ±0.2% |
I /A | ±5% |
表2 实验中物理变量的精度
Table 2 Accuracy of physical variables in experiments
实验变量 | 不确定度 |
---|---|
T/℃ | ±0.1% |
U/V | ±0.2% |
I /A | ±5% |
图7 不同光照强度下温差发电器开路电压和冷热端温差分布
Fig.7 Open circuit voltage and temperature difference between cold and hot ends distribution of thermoelectric generator under different sunlight intensity
图8 不同光照强度下本文选择吸收涂层和商用太阳能涂层温差及功率的对比
Fig.8 Comparison of temperature difference and power between absorption coating of this paper and commercial solar coating under different sunlight intensity
图11 不同太阳光角度下温差发电器开路电压和冷热端温差分布
Fig.11 Open circuit voltage and temperature difference between cold and hot ends distribution of thermoelectric generator under different sunlight angles
图12 不同太阳光角度下本文选择吸收涂层和商用太阳能涂层温差及功率的对比
Fig.12 Comparison of temperature difference and power between absorption coating of this paper and commercial solar coating under different sunlight angles
1 | Qi C, Ding Z, Tu J L, et al. Study on backward-facing step flow and heat transfer characteristics of hybrid nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(6): 2269-2284. |
2 | 吴延鹏, 雷晓宇, 陆禹名, 等. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29. |
Wu Y P, Lei X Y, Lu Y M, et al. Research progress of superhydrophobic anti-reflection films applied on transparent surfaces of solar devices[J]. CIESC Journal, 2021, 72(S1): 21-29. | |
3 | 赵佳腾, 王增鹏, 戴宇成, 等. 两亲性纳米流体太阳能重力热管传热性能研究[J]. 化工学报, 2020, 71(12): 5461-5469. |
Zhao J T, Wang Z P, Dai Y C, et al. Research on heat transfer performance of amphiphilic nanofluid solar gravity heat pipe[J]. CIESC Journal, 2020, 71(12): 5461-5469. | |
4 | Qi C, Tang J H, Fan F, et al. Effects of magnetic field on thermo-hydraulic behaviors of magnetic nanofluids in CPU cooling system[J]. Applied Thermal Engineering, 2020, 179: 115717. |
5 | 侯隆澍, 全贞花, 杜伯尧, 等. 太阳能-空气双热源热泵系统性能实验[J]. 化工学报, 2020, 71(12): 5498-5505. |
Hou L S, Quan Z H, Du B Y, et al. Performance experiment on solar energy and air dual-heat-source heat pump system[J]. CIESC Journal, 2020, 71(12): 5498-5505. | |
6 | Karthick K, Suresh S, Hussain M M M D, et al. Evaluation of solar thermal system configurations for thermoelectric generator applications: a critical review[J]. Solar Energy, 2019, 188: 111-142. |
7 | Heikes R R, Ure Jr R W. Thermoelectricity: Science and Engineering[M]. New York: Interscience Publishers, 1961. |
8 | Yuan D D, Jiang W, Sha A M, et al. Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect[J]. Applied Energy, 2023, 331: 120459. |
9 | Yang B, Wu S C, Li Q, et al. Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition[J]. Renewable Energy, 2023, 204: 197-217. |
10 | Guo Z X, Yang B, Chen Y J, et al. Modular thermoelectric generation arrays reconfiguration under heterogeneous temperature distribution via improved cooperation search algorithm: modelling, design and HIL validation[J]. Applied Thermal Engineering, 2023, 219: 119323. |
11 | Ji Y S, Lv S. Comprehensive research on a simple and efficient radiative cooling driving thermoelectric generator system for nighttime passive power generation[J]. Applied Thermal Engineering, 2023, 219: 119560. |
12 | Pourkiaei S M, Ahmadi M H, Sadeghzadeh M, et al. Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials[J]. Energy, 2019, 186: 115849. |
13 | 郭捷, 李智东, 陈平宇, 等. 纳米复合热电材料的研究现状[J]. 材料导报, 2011, 25(S1): 165-168. |
Guo J, Li Z D, Chen P Y, et al. Research situation of nanocomposites thermoelectric materials[J]. Materials Review, 2011, 25(S1): 165-168. | |
14 | 赵付舟, 王俊席, 崔教林, 等. 汽车尾气废热回收的热电模块布置特性研究[J]. 兵工学报, 2013, 34(5): 634-638. |
Zhao F Z, Wang J X, Cui J L, et al. Study of module configuration characteristics about exhaust gas thermoelectric recycling in vehicle[J]. Acta Armamentarii, 2013, 34(5): 634-638. | |
15 | 邓亚东, 范韬, 郭珣, 等. 汽车尾气温差发电装置及热电模块的布置研究[J]. 武汉理工大学学报(信息与管理工程版), 2010, 32(2): 265-267, 283. |
Deng Y D, Fan T, Guo X, et al. Arrangement of TEG device and thermoelectric module[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2010, 32(2): 265-267, 283. | |
16 | Ren W, Sun Y, Zhao D L, et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities[J]. Science Advances, 2021, 7(7): eabe0586. |
17 | Yang S, Cho K, Kim S. Energy devices generating and storing electricity from finger and solar thermal energy[J]. Nano Energy, 2020, 69: 104458. |
18 | Li Y H, Wu Z H, Xie H Q, et al. Study on the performance of TEG with heat transfer enhancement using graphene-water nanofluid for a TEG cooling system[J]. Science China Technological Sciences, 2017, 60(8): 1168-1174. |
19 | Karana D R, Sahoo R R. Effect on TEG performance for waste heat recovery of automobiles using MgO and ZnO nanofluid coolants[J]. Case Studies in Thermal Engineering, 2018, 12: 358-364. |
20 | Hilmin M N H M, Remeli M, Singh B, et al. Thermoelectric power generations from vehicle exhaust gas with TiO2 nanofluid cooling[J]. Thermal Science and Engineering Progress, 2020, 18: 100558. |
21 | Rajaee F, Rad M A V, Kasaeian A, et al. Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink[J]. Energy Conversion and Management, 2020, 212: 112780. |
22 | Deng Y D, Liu X, Chen S, et al. Research on the compatibility of the cooling unit in an automotive exhaust-based thermoelectric generator and engine cooling system[J]. Journal of Electronic Materials, 2014, 43(6): 1815-1823. |
23 | 王婵, 周泽广, 区煜广, 等. 温差发电器的研究进展[J]. 电测与仪表, 2010, 47(4): 40-44. |
Wang C, Zhou Z G, Ou Y G, et al. Research and development on thermoelectric generators[J]. Electrical Measurement & Instrumentation, 2010, 47(4): 40-44. | |
24 | 种道坤. 温差发电技术用于工业废热利用的可行性分析[J]. 硅谷, 2013, 5(1): 213, 231. |
Chong D K. Feasibility analysis of thermoelectric power generation technology used in industrial waste heat utilization[J]. Silicon Valley, 2013, 5(1): 213, 231. | |
25 | Qi C, Wang Y X, Tang J H. Effect of squid fin bionic surface and magnetic nanofluids on CPU cooling performance under magnetic field[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(4): e2482. |
26 | 刘强, 陈燕, 杜谦, 等. 基于碟式聚光器的温差发电性能仿真研究[J]. 电源技术, 2021, 45(7): 928-931. |
Liu Q, Chen Y, Du Q, et al. Simulation research on thermal power generation performance based on disc concentrator[J]. Chinese Journal of Power Sources, 2021, 45(7): 928-931. | |
27 | 冯倩倩, 杨浩钦, 韩娅钟, 等. 半导体温差发电转换效率研究[J]. 无线互联科技, 2021, 18(4): 108-109, 114. |
Feng Q Q, Yang H Q, Han Y Z, et al. Study on conversion efficiency of semiconductor thermoelectric power generation[J]. Wireless Internet Technology, 2021, 18(4): 108-109, 114. | |
28 | 霍钰佳, 汪风传, 张瑶. 基于光热发电的多功能充电伞功能设计[J]. 现代信息科技, 2020, 4(21): 160-162, 165. |
Huo Y J, Wang F C, Zhang Y. Functional design of multifunctional charging umbrella based on photothermal power generation[J]. Modern Information Technology, 2020, 4(21): 160-162, 165. | |
29 | Mastai Y, Polarz S, Antonietti M. Silica-carbon nanocomposites—a new concept for the design of solar absorbers[J]. Advanced Functional Materials, 2002, 12(3): 197. |
30 | Ding Z, Qi C, Wang Y X, et al. Preparation and photothermal conversion performance of carbon-silica nanocomposite films for spectrally selective solar absorbers[J]. Solar Energy Materials and Solar Cells, 2021, 233: 111391. |
31 | 肖丹萍, 曾志刚, 沈超, 等. 孔隙率对水热合成Bi2Te3热电性能的影响[J]. 热加工工艺, 2016, 45(4): 52-55, 59. |
Xiao D P, Zeng Z G, Shen C, et al. Effect of porosity on thermoelectric performance of hydrothermal synthesized Bi2Te3 [J]. Hot Working Technology, 2016, 45(4): 52-55, 59. | |
32 | 徐大为, 王昆能, 胡浪, 等. 基于温差发电的智能柴煤炉设计[J]. 湖北民族学院学报(自然科学版), 2016, 34(2): 207-209, 240. |
Xu D W, Wang K N, Hu L, et al. Design of intelligent coal stoves based on thermoelectric power generation[J]. Journal of Hubei University for Nationalities (Natural Science Edition), 2016, 34(2): 207-209, 240. | |
33 | 郭珂慧. PCM-TEG围护结构的热电效能及其优化研究[D]. 徐州: 中国矿业大学, 2020. |
Guo K H. Study on thermoelectric efficiency and optimization of PCM-TEG envelope[D]. Xuzhou: China University of Mining and Technology, 2020. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||