[1] |
KOWALIK P, ANTONIAK-JURAK K, PRÓCHNIAK W, et al. The evaluation of synthesis route impact on structure, morphology and LT-WGS activity of Cu/ZnO/Al2O3 catalysts[J]. Catalyst Letter, 2017, 147:1422-1433.
|
[2] |
SCHUMANN J, LUNKENBEIN T, TARASOV A, et al. Synthesis and characterisation of a highly active Cu/ZnO:Al catalyst[J]. ChemCatChem, 2014, (6):2889-2897.
|
[3] |
KATTEL S, RAMÍREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355:1296-1299.
|
[4] |
DÍEZ-RAMÍREZ J, DORADO F, OSA A R, et al. Hydrogenation of CO2 to methanol at atmospheric pressure over Cu/ZnO catalysts:influence of the calcination, reduction, and metal loading[J]. Industrial & Engineering Chemistry Research, 2017, 56:1979-1987.
|
[5] |
BEHRENS M, SCHLÖGL R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Z. Anorg. Allg. Chem., 2013, 639(15):2683-2695.
|
[6] |
SMITH P J, KONDRAT S A, CHATER P A, et al. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation[J]. Chem. Sci., 2017, 8(3):2436-2447.
|
[7] |
SPENCER M S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction[J]. Topics in Catalysis, 1999, (8):259-266.
|
[8] |
SCHUR M, BEMS B, DASSENOY A, et al. Continuous coprecipitation of catalysts in a micromixer:nanostructured Cu/ZnO composite for the synthesis of methanol[J]. Angew. Chem. Int. Ed., 2003, 42(32):3815-3817.
|
[9] |
SIMSON G, PRASETYO E, REINER S, et al. Continuous precipitation of Cu/ZnO/Al2O3 catalysts for methanol synthesis in microstructured reactors with alternative precipitating agents[J]. Applied Catalysis A:General, 2013, 450:1-12.
|
[10] |
陈玉萍, 蒋新, 卢建刚. 微通道反应过程对铜锌催化剂微结构的影响[J]. 化工学报, 2015, 66(10):3895-3902. CHEN Y P, JIANG X, LU J G. Effects of reaction progress in microchannel on microstructure of Cu-Zn catalyst[J]. CIESC Journal, 2015, 66(10):3895-3902.
|
[11] |
JEONG Y, KIM I, KANG J Y, et al. Alcohol-assisted low temperature methanol synthesis from syngas over Cu/ZnO catalysts:effect of pH value in the co-precipitation step[J]. Journal of Molecular Catalysis A:Chemical, 2015, 400:132-138.
|
[12] |
BEHRENS M, BRENNECKE D, GIRGSDIES F, et al. Understanding the complexity of a catalyst synthesis:co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments[J]. Applied Catalysis A:General, 2011, 392(1/2):93-102.
|
[13] |
BEMS B, SCHUR M, DASSENOY A, et al. Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chemistry-A European Journal, 2003, 9:2039-2052.
|
[14] |
COMMENGE J, FALK L. Villermaux-Dushman protocol for experimental characterization of micromixers[J]. Chemical Engineering and Processing:Process Intensification, 2011, 50(10):979-990.
|
[15] |
WOLDEMARIAM M, FILIMONOV R, PURTONEN T, et al. Mixing performance evaluation of additive manufactured milli-scale reactors[J]. Chemical Engineering Science, 2016, 152:26-34.
|
[16] |
RECKAMP J M, BINDELS A, DUFFIELD S, et al. Mixing performance evaluation for commercially available micromixers using Villermaux-Dushman reaction scheme with the interaction by exchange with the mean model[J]. Organic Process Research & Development, 2017, 21:816-820.
|
[17] |
FOURNIER M C, FALK L, VILLERMAUX J. A new parallel competing reaction system for assessing micromixing efficiency-experimental approach[J]. Chemical Engineering Science, 1996, 51(22):5053-5064.
|
[18] |
RAHIMI M, VALEH-E-SHEYDA P, PARSAMOGHADAM M A, et al. LASP and Villermaux/Dushman protocols for mixing performance in microchannels:effect of geometry on micromixing characterization and size reduction[J]. Chemical Engineering and Processing:Process Intensification, 2014, 85:178-186.
|
[19] |
BEHRENS M, GIRGSDIES F. Structural effects of Cu/Zn substitution in the Malachite-Rosasite system[J]. Eur. J. Inorg. Chem., 2010, 636:919-927.
|
[20] |
ZANDER S, SEIDLHOFER B, BEHRENS M. In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu, Zn hydroxycarbonates-consequences for the preparation of Cu/ZnO catalysts[J]. Dalton Transactions, 2012, 41:13413-13422.
|
[21] |
BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. Journal of Catalysis, 2009, 267(1):24-29.
|
[22] |
WHITTLE D M, MIRZAEI A A, HARGREAVES J S J, et al. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation:effect of precipitate ageing on catalyst activity[J]. Physical Chemistry Chemical Physics, 2002, 4(23):5915-5920.
|
[23] |
ALY K A, KHALIL N M, ALGAMAL Y, et al. Lattice strain estimation for CoAl2O4 nano particles using Williamson-Hall analysis[J]. Journal of Alloys and Compounds, 2016, 676:606-612.
|
[24] |
SVINTSITSKIY D A, CHUPAKHIN A P, SLAVINSKAYA E M, et al. Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation[J]. Journal of Molecular Catalysis A:Chemical, 2013, 368/369:95-106.
|
[25] |
李忠, 郑华艳, 谢克昌. 浆态床合成甲醇CuO/ZnO/Al2O3催化剂的表面性质[J].催化学报, 2008, 29(5):431-435. LI Z, ZHENG H Y, XIE K C. Surface properties of CuO/ZnO/Al2O3 catalyst for methanol synthesis in slurry reactor[J]. Chinese Journal of Catalysis, 2008, 29(5):431-435.
|
[26] |
DAI W L, SUN Q, DENG J F, et al. XPS studies of Cu/ZnO/AL2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2[J]. Applied Surface Science, 2001, 177:172-179.
|
[27] |
GARBASSI F, PETRINI G. XPS study on the low-temperature CO shift reaction catalyst (I):The unreduced copper-zinc system[J]. Journal of Catalysis, 1984, 90:106-112.
|
[28] |
BAE J W, KANG S H, LEE Y J, et al. Synthesis of DME from syngas on the bifunctional Cu-ZnO-Al2O3/Zr-modified ferrierite:effect of Zr content[J]. Applied Catalyst B:Environmental, 2009, 90:426-435.
|
[29] |
JIANG X, ZHENG L, WANG Z, et al. Microstructure characters of Cu/ZnO catalyst precipitated inside microchannel reactor[J]. Journal of Molecular Catalysis A:Chemical, 2016, 423:457-462.
|
[30] |
BEHRENS M, GIRGSDIES F, TRUNSCHKE A, et al. Minerals as model compounds for Cu/ZnO catalyst precursors:structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture[J]. European Journal of Inorganic Chemistry, 2009, (10):1347-1357.
|