[1] |
黄德先, 王京春, 金以慧. 过程控制系统[M]. 北京:清华大学出版社, 2011. HUANG D X, WANG J C, JIN Y H. Process Control Systems[M]. Beijing:Tsinghua University Press, 2011.
|
[2] |
黄德先, 叶心宇, 竺建敏, 等. 化工过程先进控制[M]. 北京:化学工业出版社, 2006. HUANG D X, YE X Y, ZHU J M, et al. Advanced Process Control in Chemical Industrial Processes[M]. Beijing:Chemical Industry Press, 2006.
|
[3] |
GALICIA H J, HE Q P, WANG J. A reduced order soft sensor approach and its application to a continuous digester[J]. Journal of Process Control, 2011, 21(4):489-500.
|
[4] |
QIN S J. Neural networks for intelligent sensors and control-practical issues and some solutions[J]. Neural Systems for Control, 1997, 8(1):213-234.
|
[5] |
LLDIKO E F, JEROME H F. A statistical view of some chemometrics regression tools[J]. Technometrics, 1993, 35(2):109-135.
|
[6] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4):795-814.
|
[7] |
LIN B, RECKE B, KNUDSEN J K H, et al. A systematic approach for soft sensor development[J]. Computers & Chemical Engineering, 2007, 31(5):419-425.
|
[8] |
PARK S, HAN C. A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns[J]. Computers & Chemical Engineering, 2000, 24(2):871-877.
|
[9] |
YANG Y, CHAI T. Soft sensing based on artificial neural network[C]//American Control Conference, 1997. Proceedings of the IEEE. 2002:674-678.
|
[10] |
QIN S J, MCAVOY T J. Nonlinear PLS modeling using neural networks[J]. Computers & Chemical Engineering, 1992, 16(4):379-391.
|
[11] |
YAN W, SHAO H, WANG X. Soft sensing modeling based on support vector machine and Bayesian model selection[J]. Computers & Chemical Engineering, 2004, 28(8):1489-1498.
|
[12] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
|
[13] |
BENGIO Y. Learning deep architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009, 2(1):1-127.
|
[14] |
PAN Z, LIU Y, LIU G, et al. Topic Network:Topic Model with Deep Learning for Image Classification[C]//International Conference on Knowledge Science, Engineering and Management, 2015:65-73.
|
[15] |
DENG L, HINTON G, KINGSBURY B. New types of deep neural network learning for speech recognition and related applications:an overview[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE. 2013:8599-8603.
|
[16] |
MNIH A, HINTON G. A scalable hierarchical distributed language model[C]//International Conference on Neural Information Processing Systems. Curran Associates Inc. 2008:1081-1088.
|
[17] |
SHANG C, YANG F, HUANG D, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3):223-233.
|
[18] |
MAO K Z, TAN K C, SER W. Probabilistic neural-network structure determination for pattern classification[J]. IEEE Transactions on Neural Networks, 2000, 11(4):1009-1016.
|
[19] |
LEUNG F H F, LAM H K, LING S H, et al. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J]. IEEE Trans. Neural Netw., 2003, 14(1):79-88.
|
[20] |
TSAI J T, CHOU J H, LIU T K. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm[J]. IEEE Transactions on Neural Networks, 2006, 17(1):69-80.
|
[21] |
BENGIO Y, GUYON G, DROR V, et al. Deep learning of representations for unsupervised and transfer learning[C]//Workshop on Unsupervised & Transfer Learning. 2012.
|
[22] |
BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13(1):281-305.
|
[23] |
BENGIO Y. Practical Recommendations for Gradient-Based Training of Deep Architectures[M]//Neural Networks:Tricks of the Trade. Berlin:Springer Berlin Heidelberg, 2012:133-144.
|
[24] |
BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007, 19(1):153-160.
|
[25] |
周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press, 2016.
|
[26] |
LV F, WEN C, BAO Z, et al. Fault diagnosis based on deep learning[C]//American Control Conference. 2016:6851-6856.
|
[27] |
CARREIRA-PERPINAN M A, HINTON G E. On contrastive divergence learning[C]//Artificial Intelligence & Statistics. 2005.
|
[28] |
HINTON G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1):926-946.
|
[29] |
MONAGHAN R F D. Dynamic reduced order modeling of entrained flow gasifiers[D]. Cambridge:Massachusetts Institute of Technology, 2010.
|
[30] |
JI P, GAO X, HUANG D, et al. Prediction of syngas compositions in shell coal gasification process via dynamic soft-sensing method[C]//IEEE International Conference on Control and Automation. IEEE. 2013:244-249.
|