1 |
杜永贵, 李思思, 阎高伟, 等. 基于流形正则化域适应湿式球磨机负荷参数软测量[J]. 化工学报, 2018, 69(3): 1244-1251.
|
|
DuY G, LiS S, YanG W, et al. Soft sensor of wet ball mill load parameter based on domain adaptation with manifold regularization[J]. CIESC Jorunal, 2018, 69(3): 1244-1251.
|
2 |
李景杰. 我国选矿机械设备大型化研究现状及发展动向[J]. 中国机械, 2014, 50(10): 52-57.
|
|
LiJ J. Research status and development trend of large scale equipment for mineral processing in China [J]. Machine China, 2014, 50(10): 52-57.
|
3 |
ShaY, ChangT, ChangJ. Measure methods of ball mill's load[J]. Modern Electric Power, 2006, 24(35): 624-632.
|
4 |
ZhouP, ChaiT Y, WangH. Intelligent optimal-setting control for grinding circuits of mineral processing process[J]. IEEE Transactions on Automation Science & Engineering, 2009, 6(4): 730-743.
|
5 |
汤健. 基于频谱数据驱动的旋转机械设备负荷软测量[M]. 北京: 国防工业出版社, 2015: 23-50.
|
|
TangJ. Load Measurement of Rotating Machinery Based on Spectrum Data Driving[M]. Beijing: National Defense Industry Press, 2015: 23-50.
|
6 |
汤健. 基于机械信号的磨矿过程磨机负荷检测综述[C]//第28届中国过程控制会议, 2017.
|
|
TangJ. Summary of mill load detection based on mechanical signal for grinding process[C]// The twenty-eighth China Process Control Conference, 2017.
|
7 |
BhaumikA, BanerjeeS, SilJ. Designing of intelligent expert control system using petri net for grinding mill operation[J] .Wseas Transactions on Applicatons , 2005, 4(2): 147-150.
|
8 |
刘晓璞. 面向磨机负荷识别的新型磨音检测装置研究[D]. 济南: 济南大学, 2012.
|
|
LiuX P. Research of the mill noise detection device for identification of the mill load[D]. Jinan: University of Jinan, 2012.
|
9 |
TangJ, YuW, ChaiT Y, et al. Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion[J].Mechanical Systems and Signal Processing , 2016, 69(9): 485-504.
|
10 |
王飞. 基于频谱分析的磨机负荷检测方法研究[D]. 重庆: 重庆邮电大学, 2016.
|
|
WangF. Research on the detection method of mill load based on spectrum analysis[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2016.
|
11 |
惠瑜. 基于磨音的球磨机负荷软测量方法研究[D]. 西安: 西安理工大学, 2014.
|
|
HuiY. Research on soft-sensing method of ball mill load by grinding sound[D]. Xi’an: Xi’an University of Technology, 2014.
|
12 |
汤健, 赵立杰, 岳恒, 等. 基于多源数据特征融合的球磨机负荷软测量[J]. 浙江大学学报(工学版), 2010, 44(7): 1406-1413.
|
|
TangJ, ZhaoL J, YueH, et al. Soft sensor for ball mill load based on multi-source data feature fusion[J]. Journal of Zhejiang University(Engineering Science) , 2010, 44(7): 1406-1413.
|
13 |
ZhaoL J, YuanD C, TangJ. Ball mill load state recognition based on kernel PCA and probabilistic PLS-ELM[J]. Applied Mechanics and Materials, 2013, 26(1): 398-407.
|
14 |
汤健, 柴天佑, 丛秋梅, 等. 基于EMD和选择性集成学习算法的磨机负荷参数软测量[J]. 自动化学报, 2014, 40(9): 1853-1866.
|
|
TangJ, ChaiT Y, CongQ M, et al. Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm[J]. Acta Automatica Sinica, 2014, 40(9): 1853-1866.
|
15 |
赵立杰. 基于EEMD和iPLS的球磨机负荷参数集成建模方法[C]//第25届中国过程控制会议论文集.中国自动化学会过程控制专业委员会, 2014.
|
|
ZhaoL J. Ensemble modeling of ball mill load parameters based on EEMD and iPLS[C]//Proceedings of the Twenty-fifth China Conference on Process Control, Chinese Association of Automation, 2014.
|
16 |
XiaoH H, XueT T, LIUG X. The disturbance signal detection method of power quality based on MEEEMD[C]// Proceedings of 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics, 2015, 12(7): 83-91.
|
17 |
LuiY, LinJ L, ChenK. A stable algorithm of box fractal dimension and its application in pore structure[J]. Rare Material and Engineering, 2015, 44(4): 800-804.
|
18 |
ZhengZ, JiangW, WangZ. Gear fault diagnosis method based on local mean decomposition and generalized morphological fractal dimensions[J]. Mechanism and Machine Theory, 2015, 91(10): 151-167.
|
19 |
BegumS, BaruaS, FillaR.Classification of physiological signals for wheel loader operators using multi-scale entropy analysis and case-based reasoning[J]. Expert Systems with Application, 2014, 41(2): 295-305.
|
20 |
LiuZ, ChaiT Y, YuW, et al. Multi-frequency signal modeling using empirical mode decomposition and PCA with application to mill load estimation[J]. Neurocomputing, 2015, 69(23): 392-402.
|
21 |
罗小燕, 陈慧明, 卢小江. 基于网络搜索与交叉验证的SVM磨机负荷预测[J].中国测试, 2017, 43(1): 131-135.
|
|
LuoX Y, ChenH M, LuX J. Load forecasting of SVM mills based on network search and cross validation [J].China Measurement & Test, 2017, 43(1): 131-135.
|
22 |
VapnikV N. The nature of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1995, 10(5): 988-999.
|
23 |
AhilaR, SadasivamV, ManimalaK. An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbance[J].Applied Soft Computing, 2015, 32(11): 23-37.
|
24 |
张杰, 王建民, 杨志刚, 等. 模糊神经网络在磨机负荷控制中的应用[J]. 仪表技术与传感器, 2014, 24(5): 66-68+79.
|
|
ZhangJ, WangJ M, YangZ G, et al. Application of fuzzy neural network in mill load control[J]. Instrument Technique and Sensor, 2014, 24(5): 66-68+79.
|
25 |
KhanateM, AhmadiH, OmidM. Feature-level fusion based on wavelet transform and artificial neural network for fault diagnosis of planetary gearbox using acoustic and vibration signals[J]. Insight, 2013, 55(6): 323-329.
|
26 |
SaJ J M, BackesA R. ELM based signature for texture classification[J]. Pattern Recognition, 2015, 51(7): 395-401.
|
27 |
HerasD B, ArguelloF, QuesadaB P. Exploring ELM-based spatial-spectral classification of hyperspectral images[J]. International Journal of Remote Sensing, 2014, 35(2): 401-423.
|
28 |
HuangG B, ZhouH, DingX. Extreme learning machine for regression and multiclass classification[J]. IEEE Transaction on Systems, man, and Cybernetics, Part B: Cybernetics, 2012, 42(2): 513-529.
|
29 |
TangJ, WangD H, ChaiT Y. Predicting mill load using partial least squares and extreme learning machines[J]. Soft Computing, 2012, 16(9): 1585-1594.
|
30 |
ChaiT Y, ZhangL Y, SUC Y, et al. An intelligent mill load switching control of the pulverizing system for an alumina sintering process[J]. IEEE Transaction on Control Systems Technology, 2012, 20(3): 677-687.
|
31 |
柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报, 2013, 39(11): 1744-1757.
|
|
ChaiT Y. Operational optimization and feedback control for complex industrial processes[J]. Acta Automatica Sinica, 2013, 39(11): 1744-1757.
|