化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2101-2110.doi: 10.11949/0438-1157.20211782

• 能源和环境工程 • 上一篇    下一篇

太阳能波动特性大数据分析与风光互补耦合制氢系统集成

钱宇(),陈耀熙,史晓斐,杨思宇   

  1. 华南理工大学化学与化工学院,广东 广州 510640
  • 收稿日期:2021-12-17 修回日期:2022-01-28 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 钱宇 E-mail:ceyuqian@scut.edu.cn
  • 作者简介:钱宇(1957—),男,博士,教授,ceyuqian@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(22078108)

Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system

Yu QIAN(),Yaoxi CHEN,Xiaofei SHI,Siyu YANG   

  1. School of Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2021-12-17 Revised:2022-01-28 Published:2022-05-05 Online:2022-05-24
  • Contact: Yu QIAN E-mail:ceyuqian@scut.edu.cn

摘要:

太阳能是一种可持续的能源,然而其随机和间歇的波动特性制约了其大规模高渗透率应用。从分析风力和光照的基础特性出发,通过国际气象组织和航天机构的数据库中挖掘和整合数据,运用频谱分析、滤波分析,揭示了风能与光能均存在日(24 h)和年(8760 h)的波动周期;并指明了风能和光能波动周期的相位差,构成了风光能互补以平抑波动性的科学基础。对我国北方和西北多个地区的数据分析表明,当地风能与光能之间的日周期波动相位差为7个多小时,年周期波动相位差为5个多月,风能和光能的耦合对单独能源的波动具有平抑效果。由此构建了大规模稳定性风光耦合制氢供氢系统的容量配置设计准则,选用合适的蓄电池组和储氢罐,实现供氢波动率在10%以下,供氢规模达7500吨/年。该系统的单位制氢成本为25.5 CNY/kg H2,显著低于单独风能或单独光能制氢的成本;CO2排放强度为2.34 kg CO2/kg H2,优于未互补耦合的太阳能制氢系统。

关键词: 太阳能, 风能光能耦合, 数据挖掘, 多尺度建模, 制氢, 集成

Abstract:

Solar energy is a kind of sustainable energy, however, its random and intermittent fluctuation characteristics restrict its large-scale and high permeable applications. In this paper, based on the analysis of the basic characteristics of wind power and light, and through the data mining and integration from the databases of the international Meteorological Organization and space agencies, the frequency spectrum analysis and filtering analysis are applied to reveal that both wind power and photovoltaic power have daily (24 h) and annual (8760 h) fluctuation cycles. The phase differences between the wind energy and the solar energy fluctuation period are pointed out, which constitutes the scientific basis for energy complementarity to suppress the fluctuation. The data analysis of several regions in north and northwest China shows that the phase difference between wind energy and solar energy is around 7 hours daily and around 5 months annually. The coupling of the wind energy and the solar energy alleviates the individual energy fluctuation. Therefore, the design criteria and model of capacity configuration of large-scale stable wind-photovoltaic power to hydrogen production and supply system were established, and appropriate battery sets and hydrogen storage tanks were selected to achieve 7500 t/a hydrogen supply. The unit cost of hydrogen production of the system is 25.5 CNY/kg H2, which is significantly lower than the cost of hydrogen production from wind or photovoltaic energy alone; the CO2 emission intensity of the system is 2.34 kg CO2/kg H2, which is superior to the uncomplementary coupled solar hydrogen production system.

Key words: solar energy, wind-photovoltaic energy coupling, data mining, multi-scale modeling, hydrogen production, integration

中图分类号: 

  • TQ 116.2

图1

我国新疆准东风速与太阳光辐射强度2020年波动数据图"

图2

风电与光电昼夜波动曲线"

图3

经频谱分析获取的风速与光强波动频率特征"

图4

光能与风能的基础模型仿真与实际数据的比较"

图5

滤波后8760 h周期特征的风力和光强波动曲线"

图6

风能光能波动互补平抑波动"

表1

四地点风能光能8760 h与24 h周期初相位"

地名8760 h周期24 h周期
风电初相位光电初相位相位差风电初相位光电初相位相位差
通辽12月10日3月22日3个月12天14时25分6时21分8小时4分钟
包头12月26日3月21日2个月24天10时24分6时09分4小时14分钟
酒泉2月3日3月23日1个月18天6时12分6时48分36分钟
准东10月25日3月27日5个月1天22时51分6时33分7小时42分钟

图7

四地点风能光能互补水平"

图8

风光耦合制氢系统拓扑结构"

表2

风光耦合制氢系统容量配置"

项目光伏发电 制氢

风力发电

制氢

风电光电 耦合制氢
风机装机容量/MW234130
光伏装机容量/MW320137
蓄电池容量/MWh422577451250
电解槽制氢产能/(m3/h)130001300013000
储氢罐容量/m328790118004170
蓄电池时间常数τb/h9216827
储氢罐时间常数τs/h1906785277
年产氢量/t750075007500

图9

集成系统各环节波动率δ变化"

图10

风光耦合制氢系统生命周期边界"

图11

制氢系统的CO2排放强度及单位制氢成本对比"

1 IEA. Renewables 2020: analysis and forecast to 2025[R/OL]. Paris: International Energy Agency, 2020. .
2 潘希. 中国气象局评估称风能可开发量为50亿千瓦[N/OL]. 中国科学报, 2015-5-28(4)[2021-10-9]. .
Pan X. The China Meteorological Administration estimates the amount of exploitable wind power at 5 gigawatts[N/OL]. China Science Daily, 2015-5-28(4)[2021-10-9]. .
3 Kabir E, Kumar P, Kumar S, et al. Solar energy: potential and future prospects[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 894-900.
4 Lu X, McElroy M B, Kiviluoma J. Global potential for wind-generated electricity[J]. PNAS, 2009, 106(27): 10933-10938.
5 Bird L, Lew D, Milligan M, et al. Wind and solar energy curtailment: a review of international experience[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 577-586.
6 Leonard M D, Michaelides E E, Michaelides D N. Energy storage needs for the substitution of fossil fuel power plants with renewables[J]. Renewable Energy, 2020, 145: 951-962.
7 Shaker H, Zareipour H, Wood D. Impacts of large-scale wind and solar power integration on California’s net electrical load[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 761-774.
8 Ueckerdt F, Brecha R, Luderer G. Analyzing major challenges of wind and solar variability in power systems[J]. Renewable Energy, 2015, 81: 1-10.
9 Ren G R, Wan J, Liu J F, et al. Spatial and temporal assessments of complementarity for renewable energy resources in China[J]. Energy, 2019, 177: 262-275.
10 Tong D, Farnham D J, Duan L, et al. Geophysical constraints on the reliability of solar and wind power worldwide[J]. Nature Communications, 2021, 12: 6146.
11 Al-Shetwi A Q, Hannan M A, Jern K P, et al. Grid-connected renewable energy sources: review of the recent integration requirements and control methods[J]. Journal of Cleaner Production, 2020, 253: 119831.
12 Lin B Q, Li J L. Analyzing cost of grid-connection of renewable energy development in China[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1373-1382.
13 李仁贵, 李灿. 人工光合成太阳燃料制备途径及规模化[J]. 科技导报, 2020, 38(23): 105-112.
Li R G, Li C. Perspectives on artificial photosynthesis for solar fuels production[J]. Science & Technology Review, 2020, 38(23): 105-112.
14 Chauvy R, Dubois L, Lybaert P, et al. Production of synthetic natural gas from industrial carbon dioxide[J]. Applied Energy, 2020, 260: 114249.
15 Naik S P, Ryu T, Bui V, et al. Synthesis of DME from CO2/H2 gas mixture[J]. Chemical Engineering Journal, 2011, 167(1): 362-368.
16 安广禄, 刘永忠, 康丽霞. 适应季节性氨需求的可再生能源合成氨系统优化设计[J]. 化工学报, 2021, 72(3): 1595-1605.
An G L, Liu Y Z, Kang L X. Optimal design of synthetic ammonia production system powered by renewable energy for seasonal demands of ammonia[J]. CIESC Journal, 2021, 72(3): 1595-1605.
17 Kendall K, Kendall M, Liang B, et al. Hydrogen vehicles in China: replacing the western model[J]. International Journal of Hydrogen Energy, 2017, 42(51): 30179-30185.
18 Obregón A, Nitsche H, Körber M, et al. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring[J]. Advances in Science and Research, 2014, 11(1): 25-33.
19 Pfenninger S, Staffell I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data[J]. Energy, 2016, 114: 1251-1265.
20 Zhang H X, Cao Y J, Zhang Y, et al. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied Energy, 2018, 216: 172-182.
21 Jerez S, Trigo R M, Sarsa A, et al. Spatio-temporal complementarity between solar and wind power in the Iberian peninsula[J]. Energy Procedia, 2013, 40: 48-57.
22 Liu Y, Xiao L Y, Wang H F, et al. Analysis on the hourly spatiotemporal complementarities between China's solar and wind energy resources spreading in a wide area[J]. Science China Technological Sciences, 2013, 56(3): 683-692.
23 周秀珍, 肖雷. 基于快速傅里叶变换的实时频谱分析方法研究[J]. 信息通信, 2018, 31(8): 21-22.
Zhou X Z, Xiao L. Research on real-time spectrum analysis method based on Fast Fourier Transform[J]. Information & Communications, 2018, 31(8): 21-22.
24 汪宁渤, 王建东, 何世恩. 酒泉风电跨区消纳模式及其外送方案[J]. 电力系统自动化, 2011, 35(22): 82-89.
Wang N B, Wang J D, He S E. Cross-border accommodation method and transmission scheme of Jiuquan wind power[J]. Automation of Electric Power Systems, 2011, 35(22): 82-89.
25 王坤非, 王泰华, 姚学召, 等. 基于MATLAB/Simulink FIR数字滤波器设计的不同实现方法研究[J]. 电子测量技术, 2017, 40(1): 17-20, 25.
Wang K F, Wang T H, Yao X Z, et al. MATLAB/Simulink based study of differert approaches using FIR digital design[J]. Electronic Measurement Technology, 2017, 40(1): 17-20, 25.
26 IRENA. Hydrogen from renewable power: technology outlook for the energy transition[R/OL]. Abu Dhabi: International Renewable Energy Agency, 2018. .
27 中国电力网. 2021年世界上最大的发电站及世界各国最大的发电站报告[EB/OL]. [2021-12-01]. .
Chinapower.com.cn. The world's largest power stations in 2021 and the world's largest power stations by country report[EB/OL]. [2021-12-01]. .
28 华为技术有限公司. 共建绿色美好未来, 全球数字能源峰会成功举办[EB/OL]. [2021-12-1]. .
HUAWEI. Global-Digital-Energy-Summit-Successfully-Held-for-a-Better-Greener-Future[EB/OL]. [2021-12-1]. .
29 中国电动汽车百人会. 中国氢能产业发展报告2020[R/OL]. 北京: 中国电动汽车百人会, 2020. .
China EV 100. China hydrogen energy industry development report 2020[R/OL]. Beijing: China EV100, 2020. .
30 陈强. 全球最大加氢站已进入试运行阶段[N/OL]. 北京日报, 2021-5-18(7)[2021-12-01]. .
Chen Q. The world's largest hydrogenation station has entered the trial operation stage[N/OL]. Beijing Daily, 2021-5-18(7)[2021-12-01]. .
31 国家统计局城市社会经济调查司. 中国城市统计年鉴-2020[M]. 北京: 中国统计出版社, 2020.
Department of Urban Surveys National Bureau of Statistics of China. China City Statistical Yearbook-2020[M]. Beijing: China Statistics Press, 2020.
32 Dennison F J, Azapagic A, Clift R, et al. Life cycle assessment: comparing strategic options for the mains infrastructure—Part I[J]. Water Science and Technology, 1999, 39(10/11): 315-319.
33 Xiang D, Qian Y, Man Y, et al. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process[J]. Applied Energy, 2014, 113: 639-647.
[1] 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
[2] 宋悦, 张启成, 彭文朝, 李阳, 张凤宝, 范晓彬. MoS2基单原子催化剂的合成及其在电催化中的应用[J]. 化工学报, 2023, 74(2): 535-545.
[3] 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806.
[4] 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478.
[5] 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44.
[6] 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962.
[7] 戚新刚, 路利波, 陈渝楠, 葛志伟, 郭烈锦. 造纸黑液超临界水气化制氢与高附加值化学品回收研究进展[J]. 化工学报, 2022, 73(8): 3338-3354.
[8] 陈昊, 陈鹏忠, 彭孝军. 金属基极紫外光刻胶[J]. 化工学报, 2022, 73(8): 3307-3325.
[9] 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646.
[10] 徐振和, 李泓江, 高雨, 礼峥, 张含烟, 徐宝彤, 丁茯, 孙亚光. In2O3/Ag:ZnIn2S4“Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635.
[11] 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894.
[12] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[13] 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082.
[14] 段文婷, 任思月, 冯霄, 王彧斐. 与换热网络热集成的精馏塔压优化[J]. 化工学报, 2022, 73(5): 2052-2059.
[15] 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!