1 |
Yue H , Zhao Y , Ma X , et al . Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41 (11): 4218-4244.
|
2 |
黄格省, 李振宇, 王建明 .我国现代煤化工产业发展现状及对石油化工产业的影响[J]. 化工进展, 2015, 34(2): 295-302.
|
|
Huang G S , Li Z Y , Wang J M . The development status of modern coal chemical industry in China and its impact on petrochemical industry[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 295-302.
|
3 |
周张锋, 李兆基, 潘鹏斌, 等 . 煤制乙二醇技术进展[J]. 化工进展, 2010, 29(11): 2003-2009.
|
|
Zhou Z F , Li Z J , Pan P B , et al . Progress in coal-to-ethylene glycol technology[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2003-2009.
|
4 |
洪海, 费利江, 唐勇, 等 . 国内煤制乙二醇研究与产业化进展[J]. 化工进展, 2010, 29(S1): 349-352.
|
|
Hong H , Fei L J , Tang Y , et al . Progress in research and industrialization of domestic coal-based ethylene glycol[J]. Chemical Progress, 2010, 29(S1): 349-352.
|
5 |
Li Q , Lin Y . Exergy analysis of the LFC process[J]. Energy Conversion and Management, 2016, 108: 348-354.
|
6 |
Yu B Y , Chien I L . Design and optimization of dimethyl oxalate (DMO) hydrogenation process to produce ethylene glycol (EG)[J]. Chemical Engineering Research and Design, 2017, 121: 173-190.
|
7 |
Gong M H , Yi Q , Huang Y , et al . Coke oven gas to methanol process integrated with CO2 recycle for high energy efficiency, economic benefits and low emissions[J]. Energy Conversion and Management, 2017, 133: 318-331.
|
8 |
Hao Y , Huang Y , Gong M , et al . A polygeneration from a dual-gas partial catalytic oxidation coupling with an oxygen-permeable membrane reactor[J]. Energy Conversion and Management, 2015, 106: 466-478.
|
9 |
卢样开, 崇立芹 . 我国煤制乙二醇产业化及竞争力分析[J]. 煤炭加工与综合利用, 2016,15: 18-24.
|
|
Lu X K , Chong L Q . Industrialization and competitiveness analysis of coal-based glycol in China[J]. Coal Processing and Comprehensive Utilization, 2016, 15: 18-24.
|
10 |
Xie K , Li W , Zhao W . Coal chemical industry and its sustainable development in China[J]. Energy, 2010, 35: 4349-4355.
|
11 |
Yi Q , Li W Y , Feng X , et al . Carbon cycle in advanced coal chemical engineering[J]. Chemical Society Review, 2015, 44(15): 5409-5445.
|
12 |
Manan Z A , Nawi W N R M , Alwi S R W , et al . Advances in Process Integration research for CO2 emission reduction—a review[J]. Journal of Cleaner Production, 2017, 167: 1-13.
|
13 |
Razzaq R , Li C , Zhang S . Coke oven gas: availability, properties, purification, and utilization in China[J]. Fuel, 2013, 113: 287-299.
|
14 |
Xiang D , Jin T , Lei X , et al . The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme[J]. Applied Energy, 2018, 212: 944-954.
|
15 |
Man Y , Yang S , Qian Y . Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission[J]. Energy Conversion and Management, 2016, 117: 162-170.
|
16 |
Man Y , Yang S , Xiang D , et al . Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture[J]. Journal of Cleaner Production, 2014, 71: 59-66.
|
17 |
Man Y , Yang S , Zhang J , et al . Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission[J]. Applied Energy, 2014, 133: 197-205.
|
18 |
Yi Q , Gong M H , Huang Y , et al . Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance[J]. Energy, 2016, 112: 618-628.
|
19 |
Yi Q , Wu G , Gong S , et al . A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas[J]. Applied Energy, 2017, 193: 149-61.
|
20 |
Lim Y , Lee C J , Jeong Y S , et al . Optimal design and decision for combined steam reforming process with dry methane reforming to reuse CO2 as a raw material[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 4982-4989.
|
21 |
Yang S , Yang Q , Man Y , et al . Conceptual design and analysis of a natural gas assisted coal-to-olefins process for CO2 reuse[J]. Industrial & Engineering Chemistry Research, 2013, 52: 14406-14414.
|
22 |
Yang Q , Zhang D , Zhou H , et al . Process simulation, analysis and optimization of a coal to ethylene glycol process[J]. Energy, 2018, 155: 521-534.
|
23 |
Yang S , Yang Q , Li H , et al . An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15763-15777.
|
24 |
Yang S , Qian Y , Ma D , et al . BGL gasifier for coal-to-SNG: a comparative techno-economic analysis[J]. Energy, 2017, 133: 158-170.
|
25 |
Pakhare D , Spivey J . A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22): 7813-37.
|
26 |
Zhang C , Jun K W , Gao R , et al . Efficient utilization of carbon dioxide in gas-to-liquids process: process simulation and techno-economic analysis[J]. Fuel, 2015, 157: 285-291.
|
27 |
Yang Q , Zhang C , Zhang D , et al . Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7600-7612.
|
28 |
Zhang C , Jun K W , Gao R , et al . Efficient utilization of associated natural gas in a modular gas-to-liquids process: technical and economic analysis[J]. Fuel, 2016, 176: 32-39.
|
29 |
Mahmood R , Parshetti G K , Balasubramanian R . Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil[J]. Energy, 2016, 102: 187-198.
|
30 |
He C , You F . Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(28): 11442-11459.
|
31 |
Hanak D P , Erans M , Nabavi S , et al . Technical and economic feasibility evaluation of calcium looping with no CO2 recirculation[J]. Chemical Engineering Journal, 2018, 335: 763-773.
|