1 |
Jia R D, Mao Z Z, Wang F L, et al. Self-tuning final product quality control of batch processes using kernel latent variable model[J]. Chemical Engineering Research and Design, 2015, 94: 119-130.
|
2 |
Jiang Q C, Yan S F, Yan X F, et al. Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2839-2848.
|
3 |
Zhang S M, Zhao C H. Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3773-3783.
|
4 |
Tulsyan A, Garvin C, Undey C. Industrial batch process monitoring with limited data[J]. Journal of Process Control, 2019, 77: 114-133.
|
5 |
Chu F, Cheng X, Jia R D, et al. Final quality prediction method for new batch processes based on improved JYKPLS process transfer model[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 183: 1-10.
|
6 |
Shokry A, Vicente P, Escudero G, et al. Data-driven soft-sensors for online monitoring of batch processes with different initial conditions[J]. Computers & Chemical Engineering, 2018, 118: 159-179.
|
7 |
赵春晖, 王福利, 姚远, 等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报, 2010, 36(3): 366-374.
|
|
Zhao C H, Wang F L, Yao Y, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3): 366-374.
|
8 |
Li X, Wu F, Zhang R D, et al. Nonlinear multivariate quality prediction based on OSC-SVM-PLS[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8154-8161.
|
9 |
Luo L J, Bao S Y, Mao J F, et al. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 150: 9-22.
|
10 |
Yao L, Ge Z Q. Locally weighted prediction methods for latent factor analysis with supervised and semisupervised process data[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1): 126-138.
|
11 |
Yao L, Ge Z Q. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498.
|
12 |
Xiong W L, Shi X D. Soft sensor modeling with a selective updating strategy for Gaussian process regression based on probabilistic principle component analysis[J]. Journal of the Franklin Institute, 2018, 355(12): 5336-5349.
|
13 |
Yuan X F, Ge Z Q, Song Z H. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13736-13749.
|
14 |
Mei C L, Su Y, Liu G H, et al. Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes[J]. Chinese Journal of Chemical Engineering, 2017, 25(1): 116-122.
|
15 |
Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7233-7242.
|
16 |
Jin H P, Chen X G, Yang J W, et al. Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 143: 58-78.
|
17 |
Souza F A A, Araújo R, Mendes J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79.
|
18 |
Yao L, Ge Z Q. Big data quality prediction in the process industry: a distributed parallel modeling framework[J]. Journal of Process Control, 2018, 68: 1-13.
|
19 |
Bidar B, Sadeghi J, Shahraki F, et al. Data-driven soft sensor approach for online quality prediction using state dependent parameter models[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162: 130-141.
|
20 |
Lu J D, Yao Y, Gao F R. Model migration for development of a new process model[J]. Industrial & Engineering Chemistry Research, 2009, 48(21): 9603-9610.
|
21 |
Zhu J L, Gao F R. Similar batch process monitoring with orthogonal subspace alignment[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8173-8183.
|
22 |
Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 1-40.
|
23 |
Tsung F, Zhang K, Cheng L W, et al. Statistical transfer learning: a review and some extensions to statistical process control[J]. Quality Engineering, 2018, 30(1): 115-128.
|
24 |
Shen S, Sadoughi M, Li M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries[J]. Applied Energy, 2020, 260: 114296.
|
25 |
Shao S Y, McAleer S, Yan R Q, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455.
|
26 |
Liu Y, Yang C, Liu K X, et al. Domain adaptation transfer learning soft sensor for product quality prediction[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 192: 103813.
|
27 |
Jaeckle C M, MacGregor J F. Product transfer between plants using historical process data[J]. AIChE Journal, 2000, 46(10): 1989-1997.
|
28 |
García Muñoz S, MacGregor J F, Kourti T. Product transfer between sites using Joint-Y PLS[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 79(1/2): 101-114.
|
29 |
汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037-1050.
|
|
Wang H Q, Sun F C, Cai Y N, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037-1050.
|
30 |
Zhou S S, Liu H W, Ye F. Variant of Gaussian kernel and parameter setting method for nonlinear SVM[J]. Neurocomputing, 2009, 72(13/14/15): 2931-2937.
|
31 |
Bao J, Chen Y Y, Yu L, et al. A multi-scale kernel learning method and its application in image classification[J]. Neurocomputing, 2017, 257: 16-23.
|
32 |
Liu R N, Wang F, Yang B Y, et al. Multiscale kernel based residual convolutional neural network for motor fault diagnosis under nonstationary conditions[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3797-3806.
|
33 |
Sun G Y, Rong X Q, Zhang A Z, et al. Multi-scale mahalanobis kernel-based support vector machine for classification of high-resolution remote sensing images[J]. Cognitive Computation, 2019. DOI: 10.1007/s12559-019-09631-5.
DOI
|
34 |
贾润达, 毛志忠, 王福利. 基于KPLS模型的间歇过程产品质量控制[J]. 化工学报, 2013, 64(4): 1332-1339.
|
|
Jia R D, Mao Z Z, Wang F L. KPLS model based product quality control for batch processes[J]. CIESC Journal, 2013, 64(4): 1332-1339.
|
35 |
Iosifidis A, Tefas A, Pitas I. Minimum class variance extreme learning machine for human action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(11): 1968-1979.
|