化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3329-3336.DOI: 10.11949/0438-1157.20190408
收稿日期:
2019-04-18
修回日期:
2019-06-24
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
何雅玲
作者简介:
刘占斌(1982—),男,博士,工程师,基金资助:
Zhanbin LIU(),Yaling HE(),Kun WANG,Zhao MA,Tao JIANG
Received:
2019-04-18
Revised:
2019-06-24
Online:
2019-09-05
Published:
2019-09-05
Contact:
Yaling HE
摘要:
超临界CO2工质在太阳能热发电系统中的应用能够有效提升整个系统的效率、紧凑性和环境友好性,因此有必要优化超临界CO2用太阳能集热器的综合性能。提出了泡沫材料有效热导率新的预测模型,并研究了不同泡沫材料填充方式对集热管内超临界CO2流动与换热性能、管壁温度分布的影响规律。结果表明,环形填充方式(沿管内壁填充)的流动换热综合性能指标(j/j c)/(f/f c)1/3最优,净吸热量最大,管壁最高温度最低且温度分布最均匀。
中图分类号:
刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
Zhanbin LIU, Yaling HE, Kun WANG, Zhao MA, Tao JIANG. Research on effects of foam filling types on heat transfer of supercritical CO2 flow in tube[J]. CIESC Journal, 2019, 70(9): 3329-3336.
材料名称 | 密度ρ /(kg·m-3) | 比热容cp /(kJ·(kg·K) -1) | 热导率λ /(W·(m·K)-1) |
---|---|---|---|
SiC | 3100 | 0.67 | 77.5 |
表1 SiC泡沫物性参数
Table 1 Material properties of SiC foam
材料名称 | 密度ρ /(kg·m-3) | 比热容cp /(kJ·(kg·K) -1) | 热导率λ /(W·(m·K)-1) |
---|---|---|---|
SiC | 3100 | 0.67 | 77.5 |
序号 | 网格数×10-3 | y + | h /(W·(m2·K)-1) |
---|---|---|---|
1 | 18.24 | 174.3 | 2082.5 |
2 | 42.45 | 120.1 | 2062.4 |
3 | 655.5 | 6.9 | 2041.4 |
4 | 710.5 | 3.5 | 1959 |
5 | 1232.5 | 3.5 | 1959 |
表2 网格独立性验证
Table 2 Grid independence verification
序号 | 网格数×10-3 | y + | h /(W·(m2·K)-1) |
---|---|---|---|
1 | 18.24 | 174.3 | 2082.5 |
2 | 42.45 | 120.1 | 2062.4 |
3 | 655.5 | 6.9 | 2041.4 |
4 | 710.5 | 3.5 | 1959 |
5 | 1232.5 | 3.5 | 1959 |
1 | 何雅玲, 王坤, 杜保存, 等 . 聚光型太阳能热发电系统非均匀辐射能流特性及解决方法的研究进展[J]. 科学通报, 2016, 61(30): 3208-3237. |
He Y L , Wang K , Du B C , et al . Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: a review[J]. Chinese Science Bulletin, 2016, 61(30): 3208-3237. | |
2 | Zheng Z J , Li M J , He Y L . Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J]. Applied Energy, 2017, 185(2): 1152-1161. |
3 | Zheng Z J , Li M J , He Y L . Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD[J]. International Journal of Heat & Mass Transfer, 2015, 87: 376-379. |
4 | Wang K , He Y L , Qiu Y , et al . A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver[J]. Renewable Energy, 2016, 89: 93-107. |
5 | He Y L , Xiao J , Cheng Z D , et al . A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector[J]. Renewable Energy, 2011, 36(3): 976-985. |
6 | Wang K , He Y L , Cheng Z D . A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution[J]. Science China Technological Sciences, 2014, 57(3): 531-540. |
7 | Cheng Z D , He Y L , Cui F Q . A new modelling method and unified code with MCRT for concentrating solar collectors and its applications[J]. Applied Energy, 2013, 101(1): 686-698. |
8 | Cheng Z D , He Y L , Xiao J , et al . Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector[J]. International Communications in Heat & Mass Transfer, 2010, 37(7): 782-787. |
9 | Ortega J , Khivsara S , Christian J , et al . Coupled optical-thermal-fluid modeling of a directly heated tubular solar receiver for supercritical CO2 Brayton cycle[C]//Abutayeh M. ASME 2015 9th International Conference on Energy Sustainability. USA: ASME Proceedings, 2015: V001T005A018-V001T005A023. |
10 | Afrin S , Ortega J D , Ho C K , et al . Modeling of a high-temperature-serpentine external tubular receiver using supercritical CO2[C] //Krenzke P , Davidson J H . ASME 2014 8th International Conference on Energy Sustainability. USA: ASME Proceedings, 2014: V001T02A011-V001T02A016. |
11 | Neises T W , Wagner M J , Gray A K . Structural design considerations for tubular power tower receivers operating at 650°C[C] //Krenzke P , Davidson J H . ASME 2014 8th International Conference on Energy Sustainability. USA: ASME Proceedings, 2014: V001T02A045- V001T02A051. |
12 | Ortega J D , Christian J M , Ho C K . Structural analysis of a direct heated tubular solar receiver for supercritical CO2 Brayton cycle[C]//Abutayeh M. ASME 2015 9th International Conference on Energy Sustainability. USA: ASME Proceedings, 2015: V001T05A015-V001T05A023. |
13 | Zhao C Y , Lu W , Tian Y . Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412. |
14 | Zhao C Y , Wu Z G . Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials & Solar Cells, 2011, 95(2): 636-643. |
15 | Chen Z , Gu M , Peng D . Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin[J]. Applied Thermal Engineering, 2010, 30(14/15): 1967-1973. |
16 | Lu W , Zhao C Y , Tassou S A . Thermal analysis on metal-foam filled heat exchangers(I): Metal-foam filled pipes[J]. International Journal of Heat & Mass Transfer, 2006, 49(15): 2751-2761. |
17 | Mahjoob S , Vafai K . A synthesis of fluid and thermal transport models for metal foam heat exchangers[J]. International Journal of Heat and Mass Transfer, 2008, 51(15/16): 3701-3711. |
18 | Jeng T M , Tzeng S C . Numerical study of confined slot jet impinging on porous metallic foam heat sink[J]. International Journal of Heat & Mass Transfer, 2005, 48(23): 4685-4694. |
19 | Bhattacharya A . Thermo-physical properties and convective transport in metal foams and finned metal foam heat sinks[D]. USA: University of Colorado, 2001. |
20 | Jiang P X , Shi R F , Xu Y J , et al . Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube[J]. The Journal of Supercritical Fluids, 2006, 38(3): 339-346. |
21 | Liu Z B , He Y L , Li Y S , et al . Heat transfer characteristics of supercritical CO2 flow in metal foam tubes[J]. The Journal of Supercritical Fluids, 2015, 101: 36-47. |
22 | Liu Z B , He Y L , Qu Z G , et al . Experimental study of heat transfer and pressure drop of supercritical CO2 cooled in metal foam tubes[J]. International Journal of Heat and Mass Transfer, 2015, 85: 679-693. |
23 | Fard M H . CFD modeling of heat transfer of CO2 at supercritical pressures flowing vertically in porous tubes[J]. International Communications in Heat and Mass Transfer, 2010, 37(1): 98-102. |
24 | 徐会金 . 金属泡沫内局部非热平衡传热特性研究[D]. 西安: 西安交通大学, 2013. |
Xu H J . Research on the local thermal non-equilibrium heat transfer characteristics in metallic foams[D]. Xi’an: Xi’an Jiaotong University, 2013. | |
25 | Calmidi V V , Mahajan R L . Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565. |
26 | Rodríguez-Sánchez M R , Soria-Verdugo A , Almendros-Ibánez J A , et al . Thermal design guidelines of solar power towers[J]. Applied Thermal Engineering, 2014, 63(1): 428-438. |
27 | 王建楠, 李鑫, 常春 . 太阳能塔式热发电站熔融盐吸热器过热故障的影响因素分析[J]. 中国电机工程学报, 2010, 30(29): 107-114. |
Wang J N , Li X , Chang C . Analysis of the influence factors on the overheat of molten salt receiver in solar tower power plants[J]. Proceedings of the CSEE, 2010, 30(29): 107-114. | |
28 | Boerema N , Morrison G , Taylor R , et al . High temperature solar thermal central-receiver billboard design[J]. Solar Energy, 2013, 97: 356-368. |
29 | Du B C , He Y L , Zheng Z J , et al . Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver[J]. Applied Thermal Engineering, 2016, 99: 741-751. |
30 | Kolb G J . An evaluation of possible next-generation high temperature molten-salt power towers[R]. California: Sandia National Laboratories, 2011. |
31 | Calmidi V V . Transport phenomena in high porosity fibrous metal foams[D]. USA: University of Colorado, 1998. |
32 | Nield D A , Bejan A . Convection in Porous Media[M]. 3rd ed. New York: Springer, 2006: 31. |
33 | Boomsma K , Poulikakos D . On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 827-836. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[3] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[4] | 林志敏, 王崇兆, 强国智, 刘树山, 王良璧. 润滑油在内插同轴交叉翼型涡产生器管内流动与传热特性分析[J]. 化工学报, 2022, 73(11): 4957-4973. |
[5] | 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254. |
[6] | 林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063. |
[7] | 乔国岳, 刘居陶, 孙剑飞, 徐琴琴, 银建中. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857. |
[8] | 高峰, 陈永昌, 赵金龙, 马重芳. 磁场对熔盐射流冲击传热的影响[J]. 化工学报, 2020, 71(S2): 92-97. |
[9] | 吕义高, 李庆, 文哲希. 正弦波纹流道印刷电路板换热器热工水力性能[J]. 化工学报, 2020, 71(S2): 142-151. |
[10] | 郎中敏, 吴刚强, 赫文秀, 韩晓星, 苟延梦, 李双莹. 二氧化铈/水基纳米流体核沸腾传热特性[J]. 化工学报, 2020, 71(5): 2061-2068. |
[11] | 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471. |
[12] | 陈景祥, 李蔚, 朱华, 金春花, 杜锦才, 张政江, 刘丽. 三维双侧强化管内R410A蒸发换热特性[J]. 化工学报, 2018, 69(S2): 76-81. |
[13] | 陈子丹, 罗会龙, 刘锦春, 曹振国, 赵新帅, 杨武彪. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036. |
[14] | 黄金, 李晓朋, 王婷, 胡艳鑫, 盛鑫鑫. 基于MWCNTs/PA复合材料铜表面处理的传热性能[J]. 化工学报, 2018, 69(7): 2956-2963. |
[15] | 李习都, 谢新玲, 张友全, 鞠全亮. 环己烷辅助超临界CO2流体制备淀粉酯[J]. 化工学报, 2017, 68(6): 2526-2534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||