1 |
Wen R F, Liu W, Ma X H, et al. Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer[J]. iScience, 2021, 24(6): 102531.
|
2 |
Enright R, Miljkovic N, Alvarado J L, et al. Dropwise condensation on micro-and nanostructured surfaces[J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3): 223-250.
|
3 |
初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444.
|
|
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro-/nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444.
|
4 |
Torresin D, Tiwari M K, Col D D, et al. Flow condensation on copper-based nanotextured superhydrophobic surfaces[J]. Langmuir, 2013, 29(2): 840-848.
|
5 |
Rose J W. Dropwise condensation theory and experiment: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 115-128.
|
6 |
马学虎, 兰忠, 王凯, 等. 舞动的液滴: 界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43.
|
|
Ma X H, Lan Z, Wang K, et al. Dancing droplet: interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1): 9-43.
|
7 |
Wen R F, Ma X H, Lee Y C, et al. Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond[J]. Joule, 2018, 2(11): 2307-2347.
|
8 |
Rose J W. Condensation heat transfer[J]. Heat and Mass Transfer, 1999, 35(6): 479-485.
|
9 |
Rykaczewski K, Paxson A T, Staymates M, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces[J]. Scientific Reports, 2014, 4: 4158.
|
10 |
Preston D J, Lu Z M, Song Y, et al. Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces[J]. Scientific Reports, 2018, 8: 540.
|
11 |
Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38.
|
12 |
Sharma C S, Stamatopoulos C, Suter R, et al. Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 29127-29135.
|
13 |
Preston D J, Mafra D L, Miljkovic N, et al. Scalable graphene coatings for enhanced condensation heat transfer[J]. Nano Letters, 2015, 15(5): 2902-2909.
|
14 |
Attinger D, Frankiewicz C, Betz A R, et al. Surface engineering for phase change heat transfer: a review[J]. MRS Energy & Sustainability, 2014, 1(1): 4.
|
15 |
Cho H J, Preston D J, Zhu Y Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2017, 2: 16092.
|
16 |
Wang R S, Jakhar K, Ahmed S, et al. Elucidating the mechanism of condensation-mediated degradation of organofunctional silane self-assembled monolayer coatings[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34923-34934.
|
17 |
Preston D J, Wang E N. Jumping droplets push the boundaries of condensation heat transfer[J]. Joule, 2018, 2(2): 205-207.
|
18 |
Miljkovic N, Wang E N. Condensation heat transfer on superhydrophobic surfaces[J]. MRS Bulletin, 2013, 38(5): 397-406.
|
19 |
Tang Y, Deng D X, Huang G H, et al. Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices[J]. Energy Conversion and Management, 2013, 66: 66-76.
|
20 |
Liu K, Huang Z, Hemmatifar A, et al. Self-cleaning porous surfaces for dry condensation[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26759-26764.
|
21 |
Cheng Y Q, Wang M M, Sun J, et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection[J]. Nano Letters, 2021, 21(17): 7411-7418.
|
22 |
Wen R F, Xu S S, Zhao D L, et al. Sustaining enhanced condensation on hierarchical mesh-covered surfaces[J]. National Science Review, 2018, 5(6): 878-887.
|
23 |
Wang R S, Antao D S. Capillary-enhanced filmwise condensation in porous media[J]. Langmuir, 2018, 34(46): 13855-13863.
|
24 |
Preston D J, Wilke K L, Lu Z M, et al. Gravitationally driven wicking for enhanced condensation heat transfer[J]. Langmuir, 2018, 34(15): 4658-4664.
|
25 |
Wang R S, Antao D S. Effect of meniscus curvature on phase-change performance during capillary-enhanced filmwise condensation in porous media[J]. Frontiers in Thermal Engineering, 2023, 3: 1131363.
|
26 |
Liter S G, Kaviany M. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44(22): 4287-4311.
|
27 |
Ling W S, Zhou W, Yu W, et al. Capillary pumping performance of porous copper fiber sintered wicks for loop heat pipes[J]. Applied Thermal Engineering, 2018, 129: 1582-1594.
|
28 |
Yang C, Nakayama A. A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3222-3230.
|
29 |
温荣福, 马学虎, 兰忠, 等. 低压蒸汽滴状冷凝中液滴脱落滞后效应[J]. 科学通报, 2015, 60(S2): 2784-2789.
|
|
Wen R F, Ma X H, Lan Z, et al. Retention effect of droplet departure in dropwise condensation at low steam pressure[J]. Chinese Science Bulletin, 2015, 60(S2): 2784-2789.
|
30 |
Lan Z, Chen Y S, Hu S B, et al. Droplet regulation and dropwise condensation heat transfer enhancement on hydrophobic-superhydrophobic hybrid surfaces[J]. Heat Transfer Engineering, 2018, 39(17/18): 1540-1551.
|
31 |
Ma X H, Zhou X D, Lan Z, et al. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2008, 51(7/8): 1728-1737.
|
32 |
Nam K, Jeong S. Investigation of oscillating flow friction factor for cryocooler regenerator considering cryogenic temperature effect[J]. Cryogenics, 2005, 45(12): 733-738.
|
33 |
Zhang X B, Qiu L M, Gan Z H, et al. CFD study of a simple orifice pulse tube cooler[J]. Cryogenics, 2007, 47(5/6): 315-321.
|