化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1095-1102.DOI: 10.11949/0438-1157.20190762
收稿日期:
2019-07-04
修回日期:
2019-09-19
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
李宏光
作者简介:
蔡涛(1991—),男,硕士研究生,Tao CAI(),Bo YANG,Hongguang LI()
Received:
2019-07-04
Revised:
2019-09-19
Online:
2020-03-05
Published:
2020-03-05
Contact:
Hongguang LI
摘要:
模糊认知图(fuzzy cognitive maps, FCM)作为一种复杂系统的建模工具,能够对系统的非线性和不确定性进行处理。由于工业过程变量间往往存在着时间延迟,传统的FCM模型难以处理这类多变量的时间序列数据,建立的预测模型往往不能反映系统内各变量真实的因果关系,从而导致预测结果的解释性差、准确度低等问题。为此,提出了一种时延挖掘模糊时间认知图(time-delay-mining fuzzy time cognitive maps, TM-FTCM),它使用互相关函数(cross-correlation function,CCF)从数据中挖掘时延信息,并通过在推理机制中添加自我影响因子和偏置及优化转换函数等参数,有效地解决了由于工业过程变量间的时延导致的预测模型不准确等问题。通过数值仿真实例及实际化工过程数据,验证了所提方法的有效性。
中图分类号:
蔡涛, 杨博, 李宏光. 基于时延挖掘模糊时间认知图的化工过程多变量时序预测方法[J]. 化工学报, 2020, 71(3): 1095-1102.
Tao CAI, Bo YANG, Hongguang LI. Chemical process multivariate time series predictions based on time-delay-mining fuzzy time cognitive maps[J]. CIESC Journal, 2020, 71(3): 1095-1102.
算法1:使用PSO求解FTCM的参数 |
---|
Input:activation:x1,x2,…,xn; targets: t1,t2,…,tn; weight matrix W; memory factor γ; cooperation index w0; ?(x) parameterτ; performance index(e.g. RMSE); |
Output:optimized W, γ, w0, τ |
Repeat For k=1 to N do Pass k-th activation xk; Compute FCM response yk using Eq.(4); According yk and tk to compute performance index; Adjust W, γ, w0, τ to minimize the performance index using PSO; End Until performance index or algorithm’s iterations has been exceeded |
表1 粒子群寻优的伪代码
Table 1 PSO optimization pseudo code
算法1:使用PSO求解FTCM的参数 |
---|
Input:activation:x1,x2,…,xn; targets: t1,t2,…,tn; weight matrix W; memory factor γ; cooperation index w0; ?(x) parameterτ; performance index(e.g. RMSE); |
Output:optimized W, γ, w0, τ |
Repeat For k=1 to N do Pass k-th activation xk; Compute FCM response yk using Eq.(4); According yk and tk to compute performance index; Adjust W, γ, w0, τ to minimize the performance index using PSO; End Until performance index or algorithm’s iterations has been exceeded |
算法2:布谷鸟搜索算法执行过程 |
---|
Begin Initial population: n host nests Xi(i =1,2,…,n) Calculation fitness: fi (i =1,2,…,n); While(not met stop condition) using Levy flight to get new solution Xi,calculation new fitness fj; select candidate solution Xi; If (fi > fj): replace candidate solution with new solution; End According to probability pa to abandon bad solution, using a preference random walk to generate a new solution instead of a discarded solution, retain the optimal solution End End |
表2 布谷鸟搜索算法的伪代码
Table 2 Cuckoo search pseudo code
算法2:布谷鸟搜索算法执行过程 |
---|
Begin Initial population: n host nests Xi(i =1,2,…,n) Calculation fitness: fi (i =1,2,…,n); While(not met stop condition) using Levy flight to get new solution Xi,calculation new fitness fj; select candidate solution Xi; If (fi > fj): replace candidate solution with new solution; End According to probability pa to abandon bad solution, using a preference random walk to generate a new solution instead of a discarded solution, retain the optimal solution End End |
概念节点 | 描述 |
---|---|
C1 | 给水温度 |
C2 | 给水流量 |
C3 | 排污流量 |
C4 | 蒸汽流量 |
C5 | 汽包液位 |
表3 相关变量选取
Table 3 Correlated variables
概念节点 | 描述 |
---|---|
C1 | 给水温度 |
C2 | 给水流量 |
C3 | 排污流量 |
C4 | 蒸汽流量 |
C5 | 汽包液位 |
相关变量 | 最大相关系数 | 时延/s |
---|---|---|
C1→C5 | 0.1022 | 807 |
C2→C5 | 0.6929 | 750 |
C3→C5 | 0.5373 | 78 |
C4→C5 | 0.5307 | 375 |
C5→C5 | — | 1 |
表4 时延挖掘
Table 4 Time-delay mining
相关变量 | 最大相关系数 | 时延/s |
---|---|---|
C1→C5 | 0.1022 | 807 |
C2→C5 | 0.6929 | 750 |
C3→C5 | 0.5373 | 78 |
C4→C5 | 0.5307 | 375 |
C5→C5 | — | 1 |
τ | RMSE×102 | ||||
---|---|---|---|---|---|
传统FCM | 改进FTCM | 无时延 | 无自影响γ | 无偏置w0 | |
1 | 35.9318 | 17.5711 | 33.0864 | 39.0032 | 33.3274 |
2 | 37.8351 | 8.8389 | 22.7103 | 42.4510 | 22.0586 |
3 | 42.9456 | 5.9062 | 13.4211 | 42.8381 | 12.2322 |
4 | 43.5164 | 6.3064 | 4.2688 | 43.5805 | 9.9159 |
5 | 43.0080 | 1.3927 | 3.1508 | 41.0092 | 6.5976 |
6 | 43.3243 | 2.9986 | 2.7560 | 43.3517 | 3.8549 |
7 | 43.8856 | 5.5132 | 3.0433 | 43.3933 | 4.6063 |
8 | 43.3293 | 4.8570 | 10.4147 | 45.3498 | 7.6283 |
9 | 43.7955 | 13.0252 | 13.9385 | 42.9575 | 5.2725 |
表5 不同因素的误差结果
Table 5 Errors corresponding to different factors
τ | RMSE×102 | ||||
---|---|---|---|---|---|
传统FCM | 改进FTCM | 无时延 | 无自影响γ | 无偏置w0 | |
1 | 35.9318 | 17.5711 | 33.0864 | 39.0032 | 33.3274 |
2 | 37.8351 | 8.8389 | 22.7103 | 42.4510 | 22.0586 |
3 | 42.9456 | 5.9062 | 13.4211 | 42.8381 | 12.2322 |
4 | 43.5164 | 6.3064 | 4.2688 | 43.5805 | 9.9159 |
5 | 43.0080 | 1.3927 | 3.1508 | 41.0092 | 6.5976 |
6 | 43.3243 | 2.9986 | 2.7560 | 43.3517 | 3.8549 |
7 | 43.8856 | 5.5132 | 3.0433 | 43.3933 | 4.6063 |
8 | 43.3293 | 4.8570 | 10.4147 | 45.3498 | 7.6283 |
9 | 43.7955 | 13.0252 | 13.9385 | 42.9575 | 5.2725 |
1 | 陈龙, 刘全利, 王霖青, 等. 基于数据的流程工业生产过程指标预测方法综述[J]. 自动化学报, 2017, 43(6): 944-954. |
Chen L, Liu Q L, Wang L Q, et al. Data-driven prediction on performance indicators in process industry: a survey[J]. Acta Automatica Sinica, 2017, 43(6): 944-954. | |
2 | 张浩, 刘振娟, 李宏光, 等. 基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法[J]. 化工学报, 2017,68(9): 3501-3510. |
Zhang H, Liu Z J, Li H G, et al. Process time series prediction based on application of correlated process variables to CNN time delayed analyses[J]. CIESC Journal, 2017, 68(9): 3501-3510. | |
3 | Kosko B. Fuzzy cognitive maps[J]. International Journal of Man-Machine Studies, 1986, 24(1): 65-75. |
4 | 陈宁, 彭俊洁, 王磊, 等. 模糊灰色认知网络的建模方法及应用[J]. 自动化学报, 2018, 44(7): 1227-1236. |
Chen N, Peng J J, Wang L, et al. Fuzzy grey cognitive networks modeling and its application[J]. Acta Automatica Sinica, 2018, 44(7): 1227-1236. | |
5 | Mls K, Cimler R, Vaščák J, et al. Interactive evolutionary optimization of fuzzy cognitive maps[J]. Neurocomputing, 2017, 232: 58-68. |
6 | Homenda W, Jastrzebska A. Clustering techniques for fuzzy cognitive map design for time series modeling[J]. Neurocomputing, 2017, 232: 3-15. |
7 | Froelich W, Pedrycz W. Fuzzy cognitive maps in the modeling of granular time series[J]. Knowledge-Based Systems, 2017, 115: 110-122. |
8 | Lu W, Yang J, Liu X, et al. The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy c-means clustering[J]. Knowledge-Based Systems, 2014, 70: 242-255. |
9 | Song H, Miao C, Roel W, et al. Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(2): 233-250. |
10 | Pedrycz W, Jastrzebska A, Homenda W. Design of fuzzy cognitive maps for modeling time series[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(1): 120-130. |
11 | Papageorgiou E I, Poczęta K. A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks[J]. Neurocomputing, 2017, 232: 113-121. |
12 | Song H J, Miao C Y, Shen Z Q, et al. Design of fuzzy cognitive maps using neural networks for predicting chaotic time series[J]. Neural Networks, 2010, 23(10): 1264-1275. |
13 | Papageorgiou E I, Froelich W. Application of evolutionary fuzzy cognitive maps for prediction of pulmonary infections[J]. IEEE Transactions on Information Technology in Biomedicine, 2012.16(1): 143-149. |
14 | Papageorgiou E I, Froelich W. Multi-step prediction of pulmonary infection with the use of evolutionary fuzzy cognitive maps[J]. Neurocomputing, 2012, 92: 28-35. |
15 | Froelich W, Papageorgiou E I, Samarinas M, et al. Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer[J]. Applied Soft Computing, 2012, 12(12): 3810-3817. |
16 | Stach W, Kurgan L, Pedrycz W, et al. Genetic learning of fuzzy cognitive maps[J]. Fuzzy Sets and Systems, 2005, 153(3): 371-401. |
17 | Papageorgiou E I, Parsopoulos K E, Stylios C S, et al. Fuzzy cognitive maps learning using particle swarm optimization[J]. Journal of Intelligent Information Systems, 2005, 25(1): 95-121. |
18 | Salmeron J L, Ruiz-Celma A, Mena A. Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes[J]. Neurocomputing, 2017, 232: 52-57. |
19 | Papageorgiou E I. Learning algorithms for fuzzy cognitive maps—a review study[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 2012, 42(2): 150-163. |
20 | Liu Z Q, Zhang J Y. Interrogating the structure of fuzzy cognitive maps[J]. Soft Computing, 2003, 7(3): 148-153. |
21 | Zhang J Y, Liu Z Q, Zhou S. Dynamic domination in fuzzy causal networks[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 42-57. |
22 | Hagiwara M. Extended fuzzy cognitive maps[C]//IEEE International Conference on Fuzzy Systems. IEEE, 1992: 795-801. |
23 | 骆祥峰, 高隽. 概率模糊认知图[J]. 中国科学技术大学学报, 2003, 33(1): 26-33. |
Luo X F, Gao J. Probabilistic fuzzy fognitive maps[J]. Journal of University of Science and Technology of China, 2003, 33(1): 26-33. | |
24 | Park K S, Kim S H. Fuzzy cognitive maps considering time relationships[J]. International Journal of Human-Computer Studies, 1995, 42(2): 157-168. |
25 | Wei Z, Lu L, Yanchun Z. Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises[J]. Expert Systems with Applications, 2008, 35(4): 1583-1592. |
26 | Homenda W, Jastrzebska A, Pedrycz W. Modeling time series with fuzzy cognitive maps[C]// IEEE International Conference on Fuzzy Systems. IEEE, 2014. |
27 | Yang F, Shah S L, Xiao D, et a1. Improved correlation analysis and visualization of industrial alarm data[J]. ISA Transactions,2012, 51(4): 499-506. |
28 | Yang B, Li H, Wen B. A dynamic time delay analysis approach for correlated process variables[J]. Chemical Engineering Research and Design, 2017, 122: 141-150. |
29 | Nasiriyan-Rad H, Amirkhani A, Naimi A, et al. Learning fuzzy cognitive map with PSO algorithm for grading celiac disease[C]// 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2016. |
30 | Salmeron J L, Rahimi S A, Navali A M, et al. Medical diagnosis of Rheumatoid Arthritis using data driven PSO-FCM with scarce datasets[J]. Neurocomputing, 2017, 232: 104-112. |
31 | Salmeron J L, Froelich W. Dynamic optimization of fuzzy cognitive maps for time series forecasting[J]. Knowledge-Based Systems, 2016, 105: 29-37. |
32 | Yang X S, Deb S. Cuckoo search via Levy flights[C]//Nature&Biologically inspired computing. World Congress on IEEE,2009: 210-214. |
[1] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[3] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[4] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[5] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[6] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[7] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[8] | 史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817. |
[9] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[10] | 杨静, 林振康, 汤君, 樊铖, 孙克宁. 电池系统的故障特征以及多故障的诊断与识别[J]. 化工学报, 2022, 73(8): 3394-3405. |
[11] | 周新杰, 王建林, 艾兴聪, 随恩光, 王汝童. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130. |
[12] | 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
[13] | 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500. |
[14] | 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082. |
[15] | 刘立邦, 杨颂, 王志坚, 贺欣欣, 赵文磊, 刘守军, 杜文广, 米杰. 基于改进WOA-LSTM的焦炭质量预测[J]. 化工学报, 2022, 73(3): 1291-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||