化工学报 ›› 2020, Vol. 71 ›› Issue (5): 1964-1975.DOI: 10.11949/0438-1157.20191430
张耀1,2(),邱晓曼1,2,陈程鹏1,2,于卓然1,2,洪厚胜1,2,3()
收稿日期:
2019-11-25
修回日期:
2019-12-30
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
洪厚胜
作者简介:
张耀(1995—),男,硕士研究生,基金资助:
Yao ZHANG1,2(),Xiaoman QIU1,2,Chengpeng CHEN1,2,Zhuoran YU1,2,Housheng HONG1,2,3()
Received:
2019-11-25
Revised:
2019-12-30
Online:
2020-05-05
Published:
2020-05-05
Contact:
Housheng HONG
摘要:
丁二酸因其C4分子结构在化工领域的潜在价值,被认为是一种具有广阔应用前景的生物基平台化合物。结合生物基丁二酸的产业现状,综合分析了丁二酸生产菌种及菌株改造、生物过程优化和丁二酸分离纯化这三个方面的研究现状。重点介绍以大肠杆菌、产琥珀酸放线杆菌、解脂耶氏酵母为代表的主要生产菌株及其改造策略;低值生物质利用及控制发酵过程中CO2 供给和pH 调节等生物过程优化策略;包括钙盐法、电渗析法、直接分离法等方法在内的丁二酸分离工艺。同时指出未来的研究重点将综合考虑经济性与能耗问题,将菌株与发酵和分离全过程整合,提高丁二酸产量,降低发酵及分离成本,进一步拓展生物基丁二酸市场应用领域。
中图分类号:
张耀, 邱晓曼, 陈程鹏, 于卓然, 洪厚胜. 生物法制造丁二酸研究进展[J]. 化工学报, 2020, 71(5): 1964-1975.
Yao ZHANG, Xiaoman QIU, Chengpeng CHEN, Zhuoran YU, Housheng HONG. Recent progress in microbial production of succinic acid[J]. CIESC Journal, 2020, 71(5): 1964-1975.
生产商 | 产能/(万吨/年) | 原料 | 生产菌株 | 发酵及分离工艺 |
---|---|---|---|---|
Myriant | 1.4 | 糖浆/木质纤维素水解液 | E. coli | 氨水维持pH, 氨沉淀法分离工艺 |
BioAmber | 0.4 | 麦芽糖浆 | E. coli | 氢氧化钠维持pH, 电透析法分离工艺 |
BioAmber & Mitsubishi | 3.0 | 玉米糖浆 | Candida krusei | 低pH发酵, 直接结晶工艺 |
Succinity | 1.0 | 甘油/糖浆 | Basfia succiniciproducens | Mg(OH)2维持pH, 镁盐分离工艺 |
Reverdia | 1.0 | 糖浆 | S. cerevisiae | 低pH发酵, 直接结晶工艺 |
表1 已建成的生物基丁二酸生产线
Table 1 Status of industrial production of succinic acid
生产商 | 产能/(万吨/年) | 原料 | 生产菌株 | 发酵及分离工艺 |
---|---|---|---|---|
Myriant | 1.4 | 糖浆/木质纤维素水解液 | E. coli | 氨水维持pH, 氨沉淀法分离工艺 |
BioAmber | 0.4 | 麦芽糖浆 | E. coli | 氢氧化钠维持pH, 电透析法分离工艺 |
BioAmber & Mitsubishi | 3.0 | 玉米糖浆 | Candida krusei | 低pH发酵, 直接结晶工艺 |
Succinity | 1.0 | 甘油/糖浆 | Basfia succiniciproducens | Mg(OH)2维持pH, 镁盐分离工艺 |
Reverdia | 1.0 | 糖浆 | S. cerevisiae | 低pH发酵, 直接结晶工艺 |
菌株 | 发酵方式 | 丁二酸产量/(g /L) | 碳源 | 得率/(g/g) | 生产速率/(g /( L·h)) | Ref. |
---|---|---|---|---|---|---|
Y. lipolytica Y-3314 | 通氧 | 45.5 | 葡萄糖 | - | - | [ |
Y. lipolytica PGC01003 | 通氧 | 160.2 | 粗甘油 | 0.40 | 0.40 | [ |
Y. lipolytica PGC202 | 通氧;低pH | 71.6 | 混合食物废弃物 | 0.61 | 0.40 | [ |
S. cerevisiae | 通氧 | 45.00 | 葡萄糖 | - | 0.45 | [ |
A. succinogenes NJ113 | 厌氧 | 47.5 | 玉米芯水解液 | 0.68 | 0.63 | [ |
A. succinogenes ATCC 55618 | 厌氧 | 151.44 | 木薯根水解液 | 1.51 | 3.22 | [ |
E. coli YY-GS004 | 厌氧 | 57 | 甘油 | 1.28 | 0.59 | [ |
E. coli AFP111 | 两阶段发酵 | 101.2 | 葡萄糖 | 1.1 | 1.3 | [ |
E. coli Tang 1683 | 两阶段发酵 | 92.7 | 葡萄糖 | 0.73 | 1.25 | [ |
C. glutamicum BOL-2 | 两阶段发酵 | 133.8 | 葡萄糖 | 1.10 | 2.48 | [ |
C. glutamicum S071 | 厌氧 | 152.2 | 葡萄糖 | 1.10 | 1.11 | [ |
表2 高产丁二酸的生产菌株
Table 2 Production strain of succinic acid
菌株 | 发酵方式 | 丁二酸产量/(g /L) | 碳源 | 得率/(g/g) | 生产速率/(g /( L·h)) | Ref. |
---|---|---|---|---|---|---|
Y. lipolytica Y-3314 | 通氧 | 45.5 | 葡萄糖 | - | - | [ |
Y. lipolytica PGC01003 | 通氧 | 160.2 | 粗甘油 | 0.40 | 0.40 | [ |
Y. lipolytica PGC202 | 通氧;低pH | 71.6 | 混合食物废弃物 | 0.61 | 0.40 | [ |
S. cerevisiae | 通氧 | 45.00 | 葡萄糖 | - | 0.45 | [ |
A. succinogenes NJ113 | 厌氧 | 47.5 | 玉米芯水解液 | 0.68 | 0.63 | [ |
A. succinogenes ATCC 55618 | 厌氧 | 151.44 | 木薯根水解液 | 1.51 | 3.22 | [ |
E. coli YY-GS004 | 厌氧 | 57 | 甘油 | 1.28 | 0.59 | [ |
E. coli AFP111 | 两阶段发酵 | 101.2 | 葡萄糖 | 1.1 | 1.3 | [ |
E. coli Tang 1683 | 两阶段发酵 | 92.7 | 葡萄糖 | 0.73 | 1.25 | [ |
C. glutamicum BOL-2 | 两阶段发酵 | 133.8 | 葡萄糖 | 1.10 | 2.48 | [ |
C. glutamicum S071 | 厌氧 | 152.2 | 葡萄糖 | 1.10 | 1.11 | [ |
1 | Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy s “Top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554. |
2 | Werpy T, Petersen G. Top value added chemicals from biomass: volume Ⅰ: results of screening for potential candidates from sugars and synthesis gas[R]. Golden, CO (US): National Renewable Energy Lab., 2004. |
3 | Yang L, Lübeck M, Lübeck P S. Aspergillus as a versatile cell factory for organic acid production[J]. Fungal Biology Reviews, 2016, 31(1): 33-49. |
4 | Zeikus J G, Jain M K, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products[J]. Applied Microbiology and Biotechnology, 1999, 51(5): 545-552. |
5 | Mika L T, Cséfalvay E, Á Németh. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical Reviews, 2018, 118(2): 505-613. |
6 | Bechthold I, Bretz K, Kabasci S, et al. Succinic acid: a new platform chemical for biobased polymers from renewable resources[J]. Chemical Engineering & Technology, 2010, 31(5): 647-654. |
7 | Pinazo J M, Domine M E, Parvulescu V, et al. Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes[J]. Catalysis Today, 2015, 239: 17-24. |
8 | de Jong E, Higson A, Walsh P, et al. Product developments in the bio-based chemicals arena[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(6): 606-624. |
9 | Gao Y. Method for production of succinic acid and sulfuric acid by paired electrosynthesis: US20130134047 [P]. |
10 | Steinmann S N, Michel C, Schwiedernoch R, et al. Electro-carboxylation of butadiene and ethene over Pt and Ni catalysts[J]. Journal of Catalysis, 2016, 343: 240-247. |
11 | Cardoso D S P, Aljukić B, Santos D M F, et al. Organic electrosynthesis: from laboratorial practice to industrial applications[J]. Organic Process Research & Development, 2017, 21(9): 1213-1226. |
12 | Becker J, Reinefeld J, Stellmacher R, et al. Systems‐wide analysis and engineering of metabolic pathway fluxes in bio‐succinate producing Basfia succiniciproducens[J]. Biotechnology & Bioengineering, 2013, 110(11): 3013-3023. |
13 | Salvachua D, Smith H, St John P C, et al. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens[J]. Bioresource Technology, 2016, 214: 558-566. |
14 | Jansen M L, van Gulik W M. Towards large scale fermentative production of succinic acid[J]. Current Opinion in Biotechnology, 2014, 30: 190-197. |
15 | Cok B, Tsiropoulos I, Roes A L, et al. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels Bioproducts & Biorefining, 2014, 8(1): 16-29. |
16 | Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
17 | 王庆昭, 吴巍, 赵学明. 生物转化法制取琥珀酸及其衍生物的前景分析[J]. 化工进展, 2004, 23(7):794-798 |
Wang Q Z, Wu W, Zhao X M. Market analysis for bioconversion of succinic acid and its derivatives[J] Chemical Industry and Engineering Progress, 2004, 23(7): 794-798. | |
18 | Delhomme C, Weuster-Botz D, Kühn F E. Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media[J]. Green Chemistry, 2009, 11(1): 13-16. |
19 | Beauprez J J, De Mey M, Soetaert W K. Microbial succinic acid production: natural versus metabolic engineered producers[J]. Process Biochemistry, 2010, 45(7): 1103-1114. |
20 | Jiang M, Ma J, Wu M. Progress of succinic acid production from renewable resources metabolic and fermentative strategies[J]. Bioresource Technology, 2017, 245: 1710-1717. |
21 | Yuzbashev T V, Yuzbasheva E Y, Laptev I A, et al. Is it possible to produce succinic acid at a low pH?[J]. Bioengineered Bugs, 2011, 2(2): 115-119. |
22 | Gao C, Yang X, Wang H, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica[J]. Biotechnology for Biofuels, 2016, 9(1): 179. |
23 | Li C, Ong K L, Yang X, et al. Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control[J]. Chemical Engineering Journal, 2019, 371: 804-812. |
24 | van de Graaf M J, Vallianpoer F, Fiey G, et al. Process for the crystallization of succinic acid: EP2371802A1 [P]. 2011-10-05. |
25 | Chen K, Li J, Ma J, et al. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber[J]. Bioresource Technology, 2011, 102(2): 1704-1708. |
26 | Thuy N T H, Kongkaew A, Flood A, et al. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate[J]. Bioresource Technology, 2017, 233: 342-352. |
27 | Yu Y, Zhu X, Xu H, et al. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli[J]. Metabolic Engineering, 2019, 56: 181-189. |
28 | Zhu X, Tan Z, Xu H, et al. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli[J]. Metabolic Engineering, 2014, 24: 87-96. |
29 | Wei L N, Zhu L W, Tang Y J. Succinate production positively correlates with the affinity of the global transcription factor Cra for its effector FBP in Escherichia coli[J]. Biotechnology for Biofuels, 2016, 9: 264. |
30 | Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate[J]. Applied and Environmental Microbiology, 2012, 78(9): 3325-3337. |
31 | Chung S, Park J, Yun J, et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum[J]. Metabolic Engineering, 2017, 40: 157-164. |
32 | 姜岷, 马江锋, 陈可泉, 等. 重组大肠杆菌产琥珀酸研究进展[J]. 微生物学通报, 2009, 36(1):120-124 |
Jiang M, Ma J F, Chen K Q, et al. The progress of recombinant Escherichia coli for production of succinic acid[J]. Microbiology China, 2009, 36(1): 120-124. | |
33 | Lin H, Bennett G N, San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield[J]. Metabolic Engineering, 2005, 7(2): 116-127. |
34 | Gokarn R R, Eiteman M A, Altman E. Metabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase[J]. Applied & Environmental Microbiology, 2000, 66(5): 1844-1850. |
35 | Kim P, Laivenieks M, Vieille C, et al. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli[J]. Appl. Environ. Microbiol., 2004, 70(2): 1238-1241. |
36 | Singh A, Soh K C, Hatzimanikatis V, et al. Manipulating redox and ATP balancing for improved production of succinate in E. coli[J]. Metabolic Engineering, 2011, 13(1): 76-81. |
37 | Zhang X, Jantama K, Moore J C, et al. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20180-20185. |
38 | Gokarn R R, Eiteman M A, Altman E. Expression of pyruvate carboxylase enhances succinate production in Escherichia coli without affecting glucose uptake[J]. Biotechnology Letters, 1998, 20(8): 795-798. |
39 | Vemuri G N, Eiteman M A, Altman E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli[J]. Applied & Environmental Microbiology, 2002, 68(4): 1715-1727. |
40 | Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
41 | Wang Q, Chen X, Yang Y, et al. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production[J]. Applied Microbiology and Biotechnology, 2006, 73(4): 887-894. |
42 | Sánchez A M, Bennett G N, San K Y. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity[J]. Metabolic Engineering, 2005, 7(3): 229-239. |
43 | Balzer G J, Thakker C, Bennett G N, et al. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase[J]. Metabolic Engineering, 2013, 20: 1-8. |
44 | Donnelly M I, Millard C S, Clark D P, et al. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol[J]. Applied Biochemistry and Biotechnology, 1998, 70/71/72(1): 187-198. |
45 | 梁丽亚, 马江锋, 刘嵘明, 等. 过量表达苹果酸脱氢酶对大肠杆菌NZN111产丁二酸的影响[J]. 生物工程学报, 2011, 27(7):1005-1012. |
Liang L Y, Ma J F, Liu R M, et al. Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111[J]. Chin. J. Biotech., 2011, 27(7): 1005-1012. | |
46 | Bunch P K, Mat-Jan F, Lee N, et al. The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli[J]. Microbiology, 1997, 143 (1): 187. |
47 | Jantama K, Haupt M J, Svoronos S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153. |
48 | Jantama K, Zhang X, Moore J C, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C[J]. Biotechnology & Bioengineering, 2010, 101(5): 881-893. |
49 | Ahn J H, Jang Y S, Sang Y L. Production of succinic acid by metabolically engineered microorganisms[J]. Current Opinion in Biotechnology, 2016, 42: 54-66. |
50 | McKinlay J B, Laivenieks M, Schindler B D, et al. A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production[J]. BMC Genomics, 2010, 11: 680. |
51 | Zheng P, Zhang K, Yan Q, et al. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling[J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(8): 831-840. |
52 | Mckinlay J B, Zeikus J G, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium[J]. Applied and Environmental Microbiology, 2005, 71(11): 6651-6656. |
53 | Choi S, Song C W, Shin J H, et al. Biorefineries for the production of top building block chemicals and their derivatives[J]. Metabolic Engineering, 2015, 28: 223-239. |
54 | Sandstrom A G, Almqvist H, Portugal-Nunes D, et al. Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7299-7318. |
55 | Raab A M, Gebhardt G, Bolotina N, et al. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid[J]. Metabolic Engineering, 2010, 12(6): 518-525. |
56 | Yan D, Wang C, Zhou J, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239. |
57 | Li C, Gao S, Yang X, et al. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor[J]. Bioresource Technology, 2018, 249: 612-619. |
58 | Beopoulos A, Cescut J, Haddouche R, et al. Yarrowia lipolytica as a model for bio-oil production[J]. Progress in Lipid Research, 2009, 48(6): 375-387. |
59 | Kamzolova S V, Allayarov R K, Lunina J N, et al. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica[J]. Bioresource Technology, 2016, 206: 128-133. |
60 | Tomaszewska L, Rywińska A, Gładkowski W. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(9): 1333-1343. |
61 | Nicaud J. Yarrowia lipolytica[J]. Yeast, 2012, 29(10): 409-418. |
62 | Yuzbashev T V, Yuzbasheva E Y, Sobolevskaya T I, et al. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica[J]. Biotechnology and Bioengineering, 2010, 107(4): 673-682. |
63 | Cui Z, Gao C, Li J, et al. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH[J]. Metabolic Engineering, 2017, 42: 126-133. |
64 | Koutinas A A, Vlysidis A, Pleissner D, et al. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers[J]. Chemical Society Reviews, 2014, 43(8): 2587-2627. |
65 | Zheng P, Dong J, Sun Z, et al. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes[J]. Bioresource Technology, 2009, 100(8): 2425-2429. |
66 | Zhang A Y, Sun Z, Leung C C J, et al. Valorisation of bakery waste for succinic acid production[J]. Green Chemistry, 2013, 15(3): 690. |
67 | Almeida J R M, Fávaro L C L, Quirino B F. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste[J]. Biotechnology for Biofuels, 2012, 5(1): 48. |
68 | Liu Y P, Zheng P, Sun Z H, et al. Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(5): 722-729. |
69 | Lin H, Bennett G N, San K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions[J]. Biotechnology and Bioengineering, 2005, 90(6): 775-779. |
70 | Vemuri G N, Eiteman M A, Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 28(6): 325-332. |
71 | Wang D, Li Q, Song Z, et al. High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 512-518. |
72 | Yan Q, Zheng P, Dong J J, et al. A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(11): 1760-1766. |
73 | Kim M I, Kim N J, Shang L, et al. Continuous production of succinic acid using an external membrane cell recycle system[J]. Journal of Microbiology and Biotechnology, 2009, 19(11): 1369. |
74 | Wang C, Li Q, Tang H, et al. Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth[J]. Bioresource Technology, 2012, 116: 366-371. |
75 | Samuelov N S, Lamed R, Lowe S, et al. Influence of CO2-HCO3- levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens[J]. Appl. Environ. Microbiol., 1991, 57(10): 3013-3019. |
76 | Lu S, Eiteman M A, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations[J]. Journal of Biotechnology, 2009, 143(3): 213-223. |
77 | Andersson C, Helmerius J, Hodge D, et al. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity[J]. Biotechnology Progress, 2009, 25(1): 116-123. |
78 | Li J, Zheng X, Fang X, et al. A complete industrial system for economical succinic acid production by Actinobacillus succinogenes[J]. Bioresource Technology, 2011, 102(10): 6147-6152. |
79 | López-Garzón C S, Straathof A J J. Recovery of carboxylic acids produced by fermentation[J]. Biotechnology Advances, 2014, 32(5): 873-904. |
80 | Mazière A, Prinsen P, García A, et al. A review of progress in (bio) catalytic routes from/to renewable succinic acid[J]. Biofuels, Bioproducts and Biorefining, 2017, 11(5): 908-931. |
81 | Kurzrock T, Weuster-Botz D. Recovery of succinic acid from fermentation broth[J]. Biotechnology Letters, 2010, 32(3): 331-339. |
82 | Guettler M V, Jain M K, Soni B K. Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms: US5723322 [P].1998-3-3. |
83 | Glassner D A, Datta R. Process for the production and purification of succinic acid: US5143834 [P]. 1992-9-1. |
84 | Cheng K, Zhao X, Zeng J, et al. Downstream processing of biotechnological produced succinic acid[J]. Applied Microbiology and Biotechnology, 2012, 95(4): 841-850. |
85 | Luque R, Lin C S, Du C, et al. Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method[J]. Green Chemistry, 2009, 11(2): 193-200. |
86 | Li Q, Wang D, Wu Y, et al. One step recovery of succinic acid from fermentation broths by crystallization[J]. Separation and Purification Technology, 2010, 72(3): 294-300. |
[1] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[2] | 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122. |
[3] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[4] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[5] | 王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. |
[6] | 童海航, 石德智, 刘嘉宇, 蔡桦伊, 罗丹, 陈飞. 金属纳米颗粒辅助木质纤维素暗发酵生物制氢的研究进展[J]. 化工学报, 2022, 73(4): 1417-1435. |
[7] | 高学金, 何紫鹤, 高慧慧, 齐咏生. 基于联合典型变量矩阵的多阶段发酵过程质量相关故障监测[J]. 化工学报, 2022, 73(3): 1300-1314. |
[8] | 黄新烨, 张冶, 张书源, 陈振, 邱彤. 贝叶斯优化方法在需钠弧菌生产1,3-丙二醇中的应用[J]. 化工学报, 2022, 73(11): 5039-5046. |
[9] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[10] | 杨瑞雄, 郑鑫, 陆涛, 赵誉泽, 杨庆华, 卢英华, 何宁, 凌雪萍. 烯酰还原酶基因的替换对裂殖壶菌合成二十碳五烯酸的影响[J]. 化工学报, 2021, 72(7): 3768-3779. |
[11] | 刘聪, 谢莉, 杨慧中. 基于改进DPC的青霉素发酵过程多模型软测量建模[J]. 化工学报, 2021, 72(3): 1606-1615. |
[12] | 郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121. |
[13] | 王艳芳,毛恒,蔡玮玮,张傲率,徐李昊,赵之平. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236. |
[14] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
[15] | 潘妍如, 刘飞. 基于混合赛博模型的微生物代谢状态估计[J]. 化工学报, 2020, 71(7): 3165-3171. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 523
|
|
|||||||||||||||||||||||||||||||||
摘要 1200
|
|
|||||||||||||||||||||||||||||||||