化工学报 ›› 2020, Vol. 71 ›› Issue (5): 1943-1963.DOI: 10.11949/0438-1157.20191302
收稿日期:
2019-10-31
修回日期:
2019-12-27
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
郭航
作者简介:
赵强(1994—),男,硕士研究生,基金资助:
Qiang ZHAO(),Hang GUO(),Fang YE,Chongfang MA
Received:
2019-10-31
Revised:
2019-12-27
Online:
2020-05-05
Published:
2020-05-05
Contact:
Hang GUO
摘要:
流场板是质子交换膜燃料电池的核心部件之一,其结构直接影响着反应气体的利用效率以及燃料电池的排水及散热性能。综述了近十余年来质子交换膜燃料电池流场板的设计与研究进展。研究者们基于平行流场、蛇形流场、交指流场、点状流场,从流道尺寸、流道截面、进口分配段、流道布置等方面开展结构设计和优化,不同程度提高了燃料电池水热管理以及电性能。此外,各种形式的组合流场可综合不同流场优点,多级分形仿生流场优化了反应物、压力与电流密度分布,三维精细化流场通过改善供气方式降低了浓差极化。
中图分类号:
赵强, 郭航, 叶芳, 马重芳. 质子交换膜燃料电池流场板研究进展[J]. 化工学报, 2020, 71(5): 1943-1963.
Qiang ZHAO, Hang GUO, Fang YE, Chongfang MA. State of the art of flow field plates of proton exchange membrane fuel cells[J]. CIESC Journal, 2020, 71(5): 1943-1963.
1 | 曹殿学, 王贵领, 吕艳卓. 燃料电池系统[M]. 北京: 北京航空航天大学, 2009: 85-86. |
Cao D X, Wang G L, Lyu Y Z. Fuel Cell System [M]. Beijing: Beijing University of Aeronautics and Astronautics, 2009: 85-86. | |
2 | Manso A P, Marzo F F, Barranco J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15256-15287. |
3 | Liu J X, Guo H, Ye F, et al. Interfacial phenomena and heat transfer in proton exchange membrane fuel cells[J]. Interfacial Phenomena and Heat Transfer, 2015, 3(3): 259-301. |
4 | 季运康, 丁大增. 质子交换膜燃料电池双极板流场分析[J]. 佳木斯大学学报(自然科学版), 2018, (2): 236-240. |
Ji Y K, Ding D Z. Flow field analysis for proton exchange membrane fuel cell bipolar plate[J]. Journal of Jiamusi University(Natural Science Edition), 2018, (2): 236-240. | |
5 | 徐云飞, 艾勇诚, 陈骏, 等. 宽脊背流场对单体PEMFC性能的影响[J]. 电池, 2014, 44(2): 71-73. |
Xu Y F, Ai Y C, Chen J, et al. Effect of wide back flow-field on performance of single PEMFC[J]. Battery Bimonthly, 2014, 44(2): 71-73. | |
6 | Chowdhury M Z, Genc O, Toros S. Numerical optimization of channel to land width ratio for PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10798-10809. |
7 | 陈磊, 郭朋彦, 张瑞珠, 等. 质子交换膜燃料电池流道尺寸对电池性能的影响[J]. 河南科技, 2018, (1): 141-142. |
Chen L, Guo P Y, Zhang R Z, et al. Effect of flow path size of proton exchange membrane fuel cell on battery performance[J]. Henan Science and Technology, 2018, (1): 141-142. | |
8 | Yoon Y G, Lee W Y, Park G G, et al. Effects of channel and rib widths of flow field plates on the performance of a PEMFC[J]. International Journal of Hydrogen Energy, 2005, 30(12): 1363-1366. |
9 | 熊济时. 质子交换膜燃料电池的流场结构优化与新型流场研究[D]. 武汉: 武汉理工大学, 2006. |
Xiong J S. Structural optimization and innovation of flow field in PEM fuel cell[D]. Wuhan: Wuhan University of Technology, 2006. | |
10 | 黄文雪. 阴极流场结构设计对质子交换膜燃料电池性能的影响[C]//2009年APC联合学术年会论文集. 上海汽车商用车技术中心, 2009: 155-161. |
Huang W X. Effects of cathode flow –field geometric structure design on performance of proton exchange membrane fuel cell[C]//Proceedings of the 2009 APC Joint Academic Annual Conference. Shanghai Automotive Commercial Vehicle Technology Center, 2009: 155-161. | |
11 | Carcadea E, Varlam M, Ingham D B, et al. The effects of cathode flow channel size and operating conditions on PEM fuel performance: a CFD modelling study and experimental demonstration[J]. International Journal of Energy Research, 2018, 42(8): 2789-2804. |
12 | 张海峰, 衣宝廉, 侯明, 等. 流场尺寸对质子交换膜燃料电池性能的影响[J]. 电源技术, 2004, 28(8): 494-497. |
Zhang H F, Yi B L, Hou M, et al. Effect of dimension of flow field on performance of PEMFC[J]. Chinese Journal of Power Sources, 2004, 28(8): 494-497. | |
13 | Cooper N, Smith T, Santamaria A D, et al. Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry[J]. International Journal of Hydrogen Energy, 2016, 41(2): 1213-1223. |
14 | 新源动力股份有限公司. 一种带有气体流场的质子交换膜燃料电池双极板: 201020155442. 0[P]. 2010-11-24. |
Xinyuan Power Co., Ltd. Proton exchange membrane fuel cell bipolar plate with gas flow field: 201020155442. 0[P]. 2010-11-24. | |
15 | 李文娟, 闵春华, 徐青, 等. 几何尺寸对楔形流场质子交换膜燃料电池性能的影响[C]//中国工程热物理学会2008年传热传质学学术会议论文集. 郑州, 2008. |
Li W J, Min C H, Xu Q, et al. Effect of geometrical size on performance of wedge flow field proton exchange membrane fuel cell[C]//Proceedings of the Chinese Society of Engineering Thermophysics 2008 Heat and Mass Transfer Conference. Zhengzhou, 2008. | |
16 | 张小娟, 张宁, 郦文忠. 渐变型流场对PEM燃料电池性能的影响[J]. 电源技术, 2010, 34(7): 664-666. |
Zhang X J, Zhang N, Li W Z. Effects of gradually-varied flow field on PEMFC performance[J]. Chinese Journal of Power Sources, 2010, 34(7): 664-666. | |
17 | Timurkutluk B, Chowdhury M Z. Numerical investigation of convergent and divergent parallel flow fields for PEMFCs[J]. Fuel Cells, 2018, 18(4): 441-448. |
18 | Song J, Guo H, Ye F, et al. Mass transfer and cell performance of a unitized regenerative fuel cell with nonuniform depth channel in oxygen-side flow field[J]. International Journal of Energy Research, 2019, 43(7): 2940-2962. |
19 | Ramin F, Sadeghifar H, Torkavannejad A. Flow field plates with trap-shape channels to enhance power density of polymer electrolyte membrane fuel cells[J]. International Journal of Heat and Mass Transfer, 2018, 129(1): 1151-1160. |
20 | 马利军, 林才顺, 薛方勤, 等. 质子交换膜燃料电池流场截面设计及三维模拟[J]. 湿法冶金, 2008, 27(1): 52-55. |
Ma L J, Lin C S, Xue F Q, et al. Flow field section design and 3D simulation of proton exchange membrane fuel cell[J]. Hydrometallurgy of China, 2008, 27(1): 52-55. | |
21 | 姜丙坤. 质子交换膜燃料电池双极板流场模型实验研究[J]. 船海工程, 2009, 38(3): 85-87. |
Jiang B K. The model experiment studies of flow field in bipolar plates of PEMFC[J]. Ship & Ocean Engineering, 2009, 38(3): 85-87. | |
22 | 熊济时, 肖金生, 潘牧, 等. 不同截面流场的质子交换膜燃料电池模拟[J]. 武汉理工大学学报, 2006, 28(e02): 553-557. |
Xiong J S, Xiao J S, Pan M, et al. Modeling of PEM fuel cell with different kind of section channels[J]. Journal of Wuhan University of Technology, 2006, 28(e02): 553-557. | |
23 | Wawdee P, Limtrakul S, Vatanatham T, et al. Water transport in a PEM fuel cell with slanted channel flow field plates[J]. International Journal of Hydrogen Energy, 2015, 40(9): 3739-3748. |
24 | Intelligent Energy Limited. Fuel cell fluid distribution plates: WO2007129030 [P]. 2007-11-15. |
25 | Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg. Separator plate unit for a fuel cell and fuel cell comprising the same with enhanced performance: EP3054514(A1) [P]. 2016-08-10. |
26 | Winter G, Dadheech G V, Trabold T A, et al. Hydrophilic coating for fuel cell bipolar plate and methods of making the same: US7935381 [P]. 2011. |
27 | 陈莉. 一种质子交换膜燃料电池双极板结构、燃料电池电堆及其控制方法: 201710897738. 6[P]. 2018-01-05. |
Chen L. Proton exchange membrane fuel cell bipolar plate structure, fuel cell stack and control method: 201710897738. 6[P]. 2018-01-05. | |
28 | Heidary H, Kermani M J, Dabir B. Influences of bipolar plate channel blockages on PEM fuel cell performances[J]. Energy Conversion & Management, 2016, 124: 51-60. |
29 | Guo H, Chen H, Ye F, et al. Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels[J]. International Journal of Energy Research, 2019, 43(7): 2737-2755. |
30 | Chen H, Guo H, Ye F, et al. Mass transfer in proton exchange membrane fuel cells with baffled flow channels and a porous‐blocked baffled flow channel design[J]. International Journal of Energy Research, 2019, 43(7): 2910-2929. |
31 | 新源动力股份有限公司. 一种非对称结构的燃料电池阴阳极板及由其构成的电堆: 201711438496. 0[P]. 2018-04-27. |
Xinyuan Power Co., Ltd. Fuel cell cathode and anode plate with asymmetric structure and electric stack composed thereof: 201711438496. 0[P]. 2018-04-27. | |
32 | 熊承盛, 罗马吉, 陈奔, 等. 流道结构对燃料电池阴极氧气分布的影响[J]. 电源技术, 2018, 42(2): 230-232+282. |
Xiong C S, Luo M J, Chen B, et al. Effect of channel structure on oxygen distribution in cathode of fuel cells[J]. Chinese Journal of Power Sources, 2018, 42(2): 230-232+282. | |
33 | 王晶晶. PEMFC薄金属双极板设计与加工的技术研究[D]. 杭州: 浙江工业大学, 2012. |
Wang J J. Technical research of design and processing for the PEMFC thin metal bipolar plate[D]. Hangzhou: Zhejiang University of Technology, 2012. | |
34 | Liu H C, Yang W M, Tan J, et al. Numerical analysis of parallel flow fields improved by micro-distributor in proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 176: 99-109. |
35 | 徐煜. 一种电极板及具有电极板的氢燃料电池: 201720421132. 0[P]. 2017-12-01. |
Xu Y. Electrode plate and hydrogen fuel cell with electrode plate: 201720421132. 0[P]. 2017-12-01. | |
36 | Ag Volkswagen. Bipolar plate and fuel cell: US20170033373(A1)[P]. 2017-2-2. |
37 | Intelligent Energy Limited. Fuel cell fluid distribution: CA2867645(A1)[P]. 2013-09-26. |
38 | Ford Motor Company, Ag Daimler. Flow field plate for reduced pressure drop in coolant: US8927170(B2)[P]. 2015-01-06. |
39 | Dabiri S, Hashemi M, Rahimi M, et al. Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell[J]. Energy, 2018, 152: 719-731. |
40 | 江苏新源动力有限公司. 空气冷却型燃料电池堆金属双极板: 200920234853. 6[P]. 2010-06-02. |
Jiangsu Xinyuan Power Co., Ltd. Air-cooled fuel cell stack metal bipolar plate: 200920234853. 6[P]. 2010-06-02. | |
41 | Li T. Hydrogen fuel cell and system thereof, and method for dynamic variable humidity control: EP2704240[P]. 2017. |
42 | Corp Hydrogenics. Flow field plate for a fuel cell and fuel cell assembly incorporating the flow field plate: CA2522731(A1)[P]. 2004-11-25. |
43 | Qiu D K, Peng L F, Yi P Y, et al. Flow channel design for metallic bipolar plates in proton exchange membrane fuel cells: experiments[J]. Energy Conversion and Management, 2018, 174: 814-823. |
44 | Lim B H, Majlan E H, Daud W R W, et al. Numerical analysis of modified parallel flow field designs for fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9210-9218. |
45 | 李茂春. PEM燃料电池流场板及其成形工艺研究[D]. 天津: 天津大学, 2004. |
Li M C. Studies on flow field plate of PEM fuel cells and its molding techniques[D]. Tianjin: Tianjin University, 2004. | |
46 | Wang X D, Yan W M, Duan Y Y, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J]. Energy Conversion and Management, 2010, 51(5): 959-968. |
47 | Zhang X Y, Higier A, Zhang X, et al. Experimental studies of effect of land width in PEM fuel cells with serpentine flow field and carbon cloth[J]. Energies, 2019, 12(3): 471. |
48 | Liu H, Li P, Wang K. Optimization of PEM fuel cell flow channel dimensions—mathematic modeling analysis and experimental verification[J]. International Journal of Hydrogen Energy, 2013, 38(23): 9835-9846. |
49 | Chang D H, Wu S Y. The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11659-11667. |
50 | Han I S, Lim J, Jeong J, et al. Effect of serpentine flow-field designs on performance of PEMFC stacks for micro-CHP systems[J]. Renewable Energy, 2013, 54(6): 180-188. |
51 | Youcef K, Ahmed B, Ziari Y, et al. Channel geometric scales effect on performance and optimization for serpentine proton exchange membrane fuel cell (PEMFC)[C]//International Conference on Technologies & Materials for Renewable Energy. AIP Publishing LLC, 2017. |
52 | Chiu H C, Jang J H, Yan W M, et al. A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields[J]. Applied Energy, 2012, 96: 359-370. |
53 | 赵胜男. 质子交换膜燃料电池性能模拟及流场优化[D]. 沈阳: 沈阳建筑大学, 2013. |
Zhao S N. Simulation on performance curves and optimization of flow field of proton exchange membrane fuel cell[D]. Shenyang: Shenyang Jianzhu University, 2013. | |
54 | 林林, 冯黛丽, 王晓东, 等. 质子交换膜燃料电池流场设计最佳化的反问题求解方法[J]. 北京科技大学学报, 2010, 32(1): 105-111. |
Lin L, Feng D L, Wang X D, et al. Inverse problem method applied to flow field optimization of proton exchange membrane fuel cell[J]. Journal of University of Science and Technology Beijing, 2010, 32(1): 105-111. | |
55 | Freire L S, Antolini E, Linardi M, et al. Influence of operational parameters on the performance of PEMFCs with serpentine flow field channels having different (rectangular and trapezoidal) cross-section shape[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12052-12060. |
56 | Shen J, Tu Z K, Siew H C. Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel[J]. Applied Thermal Engineering, 2019, 149: 1408-1418. |
57 | Ebrahimzadeh A A, Khazaee I, Fasihfar A. Numerical investigation of obstacle s effect on the performance of proton-exchange membrane fuel cell: studying the shape of obstacles[J]. Heliyon, 2019, 5(5): e01764. |
58 | 王传宾. 车用质子交换膜燃料电池流场的数值模拟及优化改进[D]. 重庆: 重庆大学, 2008. |
Wang C B. Numerical simulation and optimization of flow field of proton exchange membrane fuel cell for vehicles[D]. Chongqing: Chongqing University, 2008. | |
59 | Kuo J K, Chen C K. Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle[J]. Journal of Power Sources, 2006, 162(2): 1122-1129. |
60 | Yan X H, Guan C, Zhang Y, et al. Flow field design with 3D geometry for proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2019, 147: 1107-1114. |
61 | 上海交通大学. 质子交换膜燃料电池双极板多通道蛇行流场结构: 200910045410. 7[P]. 2009-06-24. |
Shanghai Jiao Tong University. Proton exchange membrane fuel cell bipolar plate multi-channel meandering flow field structure: 200910045410. 7[P]. 2009-06-24. | |
62 | Belchor P M, Forte M M C, Carpenter D E O S. Parallel serpentine-baffle flow field design for water management in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11900-11911. |
63 | Wang X D, Duan Y Y, Yan W M. Novel serpentine-baffle flow field design for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2007, 173(1): 210-221. |
64 | Utc Power Corp, Toyota Jidosha Kk, Ag Audi. Solid flow field plate with end turns: US2013101923(A1)[P]. 2013-04-25. |
65 | Chang S W, Chin C W, Yu C H, et al. Flow field plate of a fuel cell with airflow guiding gaskets: US2010248085(A1)[P]. 2010-09-30. |
66 | Liu H C, Tan J, Cheng L S, et al. Enhanced water removal performance of a slope turn in the serpentine flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 176: 227-235. |
67 | Jaruwasupant N, Khunatorn Y. Effects of difference flow channel designs on proton exchange membrane fuel cell using 3-D model[J]. Energy Procedia, 2011, 9: 326-337. |
68 | Company Ltd BYD. Flow field plates for fuel cells: US2007009781[P]. 2007-01-11. |
69 | Canfield F L. Fuel cell bi-cooler flow plate: US6274262[P]. 2001. |
70 | Abdulla S, Patnaikuni V S. Detailed analysis of polymer electrolyte membrane fuel cell with enhanced cross‐flow split serpentine flow field design[J]. Department of Chemical Engineering, 2019, 43(7): 2806-2820. |
71 | Min C H, He J, Wang K, et al. A comprehensive analysis of secondary flow effects on the performance of PEMFCs with modified serpentine flow fields[J]. Energy Conversion and Management, 2019, 180: 1217-1224. |
72 | Guo H, Wang M H, Liu J X, et al. Temperature distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed[J]. Journal of Power Sources, 2015, 273: 775-783. |
73 | 孙红, 陈浩, 赵胜男, 等. 脊宽对交指型PEM燃料电池性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(3): 555-560. |
Sun H, Chen H, Zhao S N, et al. The ridge width influence on the interdigital PEM fuel cell performance[J]. Journal of Shenyang Jianzhu University (Natural Science), 2013, 29(3): 555-560. | |
74 | 北京工业大学. 质子交换膜燃料电池非对称交错流道流场板: 200510085225. 2[P]. 2005-11-30. |
Beijing University of Technology. Proton exchange membrane fuel cell asymmetric staggered flow channel flow field plate: 200510085225. 2[P]. 2005-11-30. | |
75 | Zhang X Y, Chen S Z, Xia Z X, et al. Performance enhancement of PEM fuel cells with narrower outlet channel in interdigitated flow field[J]. Energy Procedia, 2019, 158: 1412-1417. |
76 | 王科. 质子交换膜燃料电池双极板流场的研究[D]. 南京: 南京航空航天大学, 2007. |
Wang K. Research on flow field on bipolar plates for proton exchange membrane fuel cell[D]. Nanjing: Nanjing Aerospace University, 2007. | |
77 | Univ Ramot At Tel Aviv Ltd. Bipolar plates and regenerative fuel cell stacks including same: AU2014203796A1[P]. 2014-07-31. |
78 | Thitakamol V, Therdthianwong A, Therdthianwong S. Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(5): 3614-3622. |
79 | Ku H W, Wu H W. Influences of operational factors on proton exchange membrane fuel cell performance with modified interdigitated flow field design[J]. Journal of Power Sources, 2013, 232: 199-208. |
80 | 上海恒劲动力科技有限公司. 燃料电池的双极板及其燃料电池: 201020281964. 5[P]. 2011-05-25. |
Shanghai Hengjin Power Technology Co., Ltd. Bipolar plate of fuel cell and its fuel cell: 201020281964. 5[P]. 2011-05-25. | |
81 | 上海科用机电设备有限公司. 一种带有凸起结构的燃料电池极板: 201010171010. 3[P]. 2011-11-15. |
Shanghai Keyong Electromechanical Equipment Co., Ltd. A fuel cell plate with a raised structure: 201010171010. 3[P]. 2011-11-15. | |
82 | Rosenberg A, Noach R, Givon M, et al. Perforated flow distributor plate: EP1982375[P]. 2011. |
83 | 中国科学院大连化学物理研究所. 一种用于质子交换膜燃料电池的流场分配板: 02106202. 1[P]. 2003-10-15. |
Dalian Institute of Chemical Physics, Chinese Academy of Sciences. A flow field distribution plate for a proton exchange membrane fuel cell: 02106202. 1[P]. 2003-10-15. | |
84 | Gen Electronic Company. Flow field design for high fuel utilization fuel cells: EP1653543[P]. 2010-10-20. |
85 | Atyabi S A, Afshari E. Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side[J]. Journal of Cleaner Production, 2019, 214: 738-748. |
86 | 中国石油大学(华东. 一种混合型结构流场的燃料电池双极板: 201720377399. 4[P]. 2017-12-01. |
China University of Petroleum. A fuel cell bipolar plate with a hybrid structure flow field: 201720377399. 4[P]. 2017-12-01. | |
87 | 沈阳建筑大学. 一种质子交换膜燃料电池流场结构: 201120120663. 9[P]. 2011-12-21. |
Shenyang Jianzhu University. Flow field structure of a proton exchange membrane fuel cell: 201120120663. 9[P]. 2011-12-21. | |
88 | 浙江工业大学. 一种主动排水质子交换膜燃料电池双极板的流场: 201510655018. X[P]. 2016-01-13. |
Zhejiang University of Technology. Flow field of an active drainage proton exchange membrane fuel cell bipolar plate: 201510655018. X[P]. 2016-01-13. | |
89 | 李昌平. 基于分支结构的PEMFC双极板流场结构数值模拟与优化[D]. 武汉: 武汉理工大学, 2011. |
Li C P. Numerical simulation and optimization of flow field for the PEMFC based on bifurcation structures[D]. Wuhan: Wuhan University of Technology, 2011. | |
90 | 武汉理工大学. 基于树叶仿生结构的质子交换膜燃料电池双极板: 201110210593. 0[P]. 2011-12-28. |
Wuhan University of Technology. Bipolar plate of PEMFC based on bionic leat structure: 201110210593. 0[P]. 2011-12-28. | |
91 | Damian-Ascencio C E, Saldaña-Robles Adriana, Hernandez-Guerrero A, et al. Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis[J]. Energy, 2017, 133: 306-316. |
92 | 苏宇静. 基于树状分形流场的质子交换膜燃料电池性能分析[D]. 杭州: 浙江工业大学, 2015. |
Su Y J. Performance analysis of proton exchange membrane fuel cell with fractal tree-1ike flow field[D]. Hangzhou: Zhejiang University of Technology, 2015. | |
93 | 乔运乾. 基于树叶形态的PEMFC双极板结构设计与优化[D]. 武汉: 武汉理工大学, 2011. |
Qiao Y Q. Bipolar plate design and optimization based on novel biometric method in PEMFC[D]. Wuhan: Wuhan University of Technology, 2011. | |
94 | 吴明格. 燃料电池双极板仿生流场主动排水机理与表面改性研究[D]. 杭州: 浙江工业大学, 2016. |
Wu M G. Study on bionic flow field active drainage mechanism and surface modification of proton exchange membrane fuel cell bipolar plate[D]. Hangzhou: Zhejiang University of Technology, 2016. | |
95 | Kloess J P, Wang X, Liu J, et al. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 188(1): 132-140. |
96 | Asadzade M, Shamloo A. Design and simulation of a novel bipolar plate based on lung-shaped bio-inspired flow pattern for PEM fuel cell: a lung-shaped bio-inspired fuel cell[J]. International Journal of Energy Research, 2017, 41(2): 1730-1739. |
97 | Turpin M C, Boff J C, Bilton B M. Flow field plate: WO03081692[P]. 2003-10-02. |
98 | Niu Z Q, Fan L H, Bao Z M, et al. Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell [J]. International Journal of Energy Research, 2018, 42(10): 3328-3338. |
99 | Zhang G, Xie B, Bao Z, et al. Multi‐phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field[J]. International Journal of Energy Research, 2018, 42(15): 4697-4709. |
100 | Dhahad H A, Alfayydh E M, Fahim K H. Effect of flow field design and channel/header ratio on velocity distribution: an experimental approach[J]. Thermal Science and Engineering Progress, 2018, 8: 118-129. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||