化工学报 ›› 2021, Vol. 72 ›› Issue (12): 5955-5964.DOI: 10.11949/0438-1157.20210925
收稿日期:
2021-07-05
修回日期:
2021-09-23
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
徐建鸿
作者简介:
陈安(1994—),男,博士,基金资助:
An CHEN(),Guangsheng LUO,Jianhong XU()
Received:
2021-07-05
Revised:
2021-09-23
Online:
2021-12-05
Published:
2021-12-22
Contact:
Jianhong XU
摘要:
乳液广泛地应用于日常生活、医疗健康以及工业生产等众多领域。定量测量和研究乳液液滴间的相互作用力对于理解和揭示乳液的稳定机制以及开发制备功能型乳液具有重要的应用前景和学术价值。随着定量测量工具的发展,表面力仪、原子力显微镜、纳米光镊等使得定量研究乳液的稳定机制成为可能。表面力仪主要用来测量两个平坦表面间的相互作用力,待测的高分子或者功能材料需要涂敷在两个平面之间;原子力显微镜主要侧重研究液滴的形变和表面力之间的关系;纳米光镊技术“无接触”地捕获和夹持两个微米级液滴进行液滴间相互作用力的原位测量,主要研究的是液滴间相互作用和液滴表面前端距离的定量关系。本文重点阐述三种定量测量工具的研究现状及其研究体系,并对未来在液滴间相互作用机制研究方面进行展望。
中图分类号:
陈安, 骆广生, 徐建鸿. 液滴间相互作用机制定量探究的研究进展[J]. 化工学报, 2021, 72(12): 5955-5964.
An CHEN, Guangsheng LUO, Jianhong XU. Research progress on quantitative exploration of the interaction mechanism between droplets[J]. CIESC Journal, 2021, 72(12): 5955-5964.
图1 水包油乳液体系中两个悬浮油滴之间的常见相互作用力示意图
Fig.1 Schematic diagram of common interaction forces between two suspended oil droplets in oil-in-water emulsion system
图4 原子力显微镜测量液滴间相互作用力示意图 (a);不同表面活性剂浓度[(0.1 mmol/L(b);3.0 mmol/L(c);10.0 mmol/L(d)]下随原子力显微镜光电探针移动距离变化液滴间动态相互作用力变化曲线[10]
Fig.4 Schematic diagram of atomic force microscope measuring the interaction force between droplets (a); The dynamic interaction force curves between droplets varies with the moving distance of the photoelectric probe of the atomic force microscope under different surfactant concentrations [0.1 mmol/L(b); 3.0 mmol/L(c); 10.0 mmol/L(d)][10]
图5 原子力显微镜测量沥青质溶液中两个单分散油滴之间的相互作用力[33]
Fig.5 Atomic force microscopy measures the interaction force between two monodisperse oil droplets in an asphaltene solution[33]
图7 SiO2粒子在NaCl溶液和CTAB溶液中相互作用力的变化情况[54] (实线代表理论模型的计算结果,空心圆点代表光镊测量的实验结果)
Fig.7 The interaction forces between SiO2 particles in NaCl and CTAB solutions[54] (The solid lines represent the calculation result of the theoretical model, and the hollow circles represent the experimental result of the optical tweezers measurement)
测量工具 | 适用体系 | 测量量级 | 优势 | 不足 |
---|---|---|---|---|
表面力仪 | 两个平面 | nN | 直接测量出两平面间绝对分离距离 | 无法直接测量液滴间相互作用 |
原子力显微镜 | 20~200 μm液滴 | nN | 直接定量测量液滴间相互作用力,有成熟的理论模型 | 难以实现微米级液滴的捕获和准确测量 |
光镊 | 0.1~10 μm液滴/粒子 | pN | 直接定量测量微米级液滴间相互作用力 | 研究较少,缺乏理论模型支撑 |
表1 定量测量工具的对比[10, 30, 35, 50-53]
Table 1 Comparison of quantitative measurement tools[10, 30, 35, 50-53]
测量工具 | 适用体系 | 测量量级 | 优势 | 不足 |
---|---|---|---|---|
表面力仪 | 两个平面 | nN | 直接测量出两平面间绝对分离距离 | 无法直接测量液滴间相互作用 |
原子力显微镜 | 20~200 μm液滴 | nN | 直接定量测量液滴间相互作用力,有成熟的理论模型 | 难以实现微米级液滴的捕获和准确测量 |
光镊 | 0.1~10 μm液滴/粒子 | pN | 直接定量测量微米级液滴间相互作用力 | 研究较少,缺乏理论模型支撑 |
1 | Benichou A, Aserin A, Garti N. Protein-polysaccharide interactions for stabilization of food emulsions[J]. Journal of Dispersion Science and Technology, 2002, 23(1/2/3): 93-123. |
2 | Ge X H, Huang J P, Xu J H, et al. Controlled stimulation-burst targeted release by smart decentered core-shell microcapsules in gravity and magnetic field[J]. Lab on a Chip, 2014, 14(23): 4451-4454. |
3 | Lissant K J, Peace B W, Wu S H, et al. Structure of high-internal-phase-ratio emulsions[J]. Journal of Colloid and Interface Science, 1974, 47(2): 416-423. |
4 | Gallarate M, Carlotti M E, Trotta M, et al. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use[J]. International Journal of Pharmaceutics, 1999, 188(2): 233-241. |
5 | Lee D H, Goh Y M, Kim J S, et al. Effective formation of silicone-in-fluorocarbon-in-water double emulsions: studies on droplet morphology and stability[J]. Journal of Dispersion Science and Technology, 2002, 23(4): 491-497. |
6 | Laugel C, Baillet A, Youenang Piemi M P, et al. Oil-water-oil multiple emulsions for prolonged delivery of hydrocortisone after topical application: comparison with simple emulsions[J]. International Journal of Pharmaceutics, 1998, 160(1): 109-117. |
7 | Laugel C, Rafidison P, Potard G, et al. Modulated release of triterpenic compounds from a O/W/O multiple emulsion formulated with dimethicones: infrared spectrophotometric and differential calorimetric approaches[J]. Journal of Controlled Release, 2000, 63(1/2): 7-17. |
8 | Jiang S, Chen Q, Tripathy M, et al. Janus particle synthesis and assembly[J]. Advanced Materials, 2010, 22(10): 1060-1071. |
9 | Martínez-Palou R, Reyes J, Cerón-Camacho R, et al. Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions—a proposed strategy for transporting extra heavy crude oils[J]. Chemical Engineering and Processing: Process Intensification, 2015, 98: 112-122. |
10 | Dagastine R R. Dynamic forces between two deformable oil droplets in water[J]. Science, 2006, 313(5784): 210-213. |
11 | Israelachvili J N. Strong intermolecular forces[M]//Intermolecular and Surface Forces. Amsterdam: Elsevier, 2011: 53-70. |
12 | 崔正刚. 表面活性剂、胶体与界面化学基础[M]. 北京: 化学工业出版社, 2013. |
Cui Z G. Fundamentals of Surfactants, Colloids, and Interface Chemistry[M]. Beijing: Chemical Industry Press, 2013. | |
13 | Scamehorn J F. An overview of phenomena involving surfactant mixtures[C]//ACS Symposium Series. Washington, DC: American Chemical Society, 1986: 1-27. |
14 | Tucker I M, Petkov J T, Jones C, et al. Adsorption of polymer–surfactant mixtures at the oil-water interface[J]. Langmuir, 2012, 28(42): 14974-14982. |
15 | Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100/101/102: 503-546. |
16 | Yang F, Liu S Y, Xu J, et al. Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability[J]. Journal of Colloid and Interface Science, 2006, 302(1): 159-169. |
17 | Chevalier Y, Bolzinger M A. Emulsions stabilized with solid nanoparticles: pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439: 23-34. |
18 | Gromer A, Penfold R, Gunning A P, et al. Molecular basis for the emulsifying properties of sugar beet pectin studied by atomic force microscopy and force spectroscopy[J]. Soft Matter, 2010, 6(16): 3957. |
19 | Manor O, Chau T T, Stevens G W, et al. Polymeric stabilized emulsions: steric effects and deformation in soft systems[J]. Langmuir, 2012, 28(10): 4599-4604. |
20 | Israelachvili J, Min Y, Akbulut M, et al. Recent advances in the surface forces apparatus (SFA) technique[J]. Reports on Progress in Physics, 2010, 73(3): 036601. |
21 | de Aguiar H B, McGraw J D, Donaldson S H. Interface-sensitive Raman microspectroscopy of water via confinement with a multimodal miniature surface forces apparatus[J]. Langmuir, 2019, 35(48): 15543-15551. |
22 | Lockie H J, Manica R, Stevens G W, et al. Precision AFM measurements of dynamic interactions between deformable drops in aqueous surfactant and surfactant-free solutions[J]. Langmuir, 2011, 27(6): 2676-2685. |
23 | Dong P F, Xu J H, Zhao H, et al. Preparation of 10 μm scale monodispersed particles by jetting flow in coaxial microfluidic devices[J]. Chemical Engineering Journal, 2013, 214: 106-111. |
24 | Ashkin A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12): 729-732. |
25 | Liu X H, Ma B G, Tan H B, et al. Effect of aluminum sulfate on the hydration of Portland cement, tricalcium silicate and tricalcium aluminate[J]. Construction and Building Materials, 2020, 232: 117179. |
26 | Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions[J]. Advances in Colloid and Interface Science, 2004, 108/109: 227-258. |
27 | McClements D J. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(7): 611-649. |
28 | Nilsen-Nygaard J, Sletmoen M, Draget K I. Stability and interaction forces of oil-in-water emulsions as observed by optical tweezers-a proof-of-concept study [J]. RSC Adv., 2014, 4(94): 52220-52229. |
29 | Israelachvili J N, Tabor D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1972, 331(1584): 19-38. |
30 | Kristiansen K, Donaldson S H, Berkson Z J, et al. Multimodal miniature surface forces apparatus (μSFA) for interfacial science measurements[J]. Langmuir, 2019, 35(48): 15500-15514. |
31 | Gould S A C, Burke K, Hansma P K. Simple theory for the atomic-force microscope with a comparison of theoretical and experimental images of graphite[J]. Physical Review B, 1989, 40(8): 5363-5366. |
32 | Zhang L Q, Yang T T, Du C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. |
33 | Shi C, Zhang L, Xie L, et al. Interaction mechanism of oil-in-water emulsions with asphaltenes determined using droplet probe AFM[J]. Langmuir, 2016, 32(10): 2302-2310. |
34 | Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie International Edition, 2016, 55(48): 15017-15021. |
35 | Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159. |
36 | Essiambre R J. Arthur Ashkin: father of the optical tweezers[J]. PNAS, 2021, 118(7): e2026827118. |
37 | Neuman K C, Block S M. Optical trapping[J]. Review of Scientific Instruments, 2004, 75(9): 2787-2809. |
38 | Lang M J, Block S M. Resource letter: LBOT-1: laser-based optical tweezers[J]. American Journal of Physics, 2003, 71(3): 201-215. |
39 | Chantakit T, Schlickriede C, Sain B, et al. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers[J]. Photonics Research, 2020, 8(9): 1435. |
40 | Chen A, Liu X Y, Wu Y X, et al. Interactions between CO2-responsive switchable emulsion droplets determined by using optical tweezers[J]. Langmuir, 2020, 36(17): 4600-4606. |
41 | Gorkowski K, Donahue N M, Sullivan R C. Aerosol optical tweezers constrain the morphology evolution of liquid-liquid phase-separated atmospheric particles[J]. Chem., 2020, 6(1): 204-220. |
42 | Lv X J, Chen Z, Ma J B, et al. Evaporation of mixed citric acid/(NH4)2SO4/H2O particles: volatility of organic aerosol by using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117552. |
43 | Zhu X M, Li N, Yang J Y, et al. Displacement detection decoupling in counter-propagating dual-beams optical tweezers with large-sized particle[J]. Sensors, 2020, 20(17): 4916. |
44 | Dey R, Ghosh S, Kundu A, et al. Simultaneous random number generation and optical tweezers calibration employing a learning algorithm based on the Brownian dynamics of a trapped colloidal particle[J]. Frontiers in Physics, 2021, 8: 576948. |
45 | Liu S, Hu Y, Xia J, et al. In situ measurement of depletion caused by SDBS micelles on the surface of silica particles using optical tweezers[J]. Langmuir, 2019, 35(42): 13536-13542. |
46 | Adamczyk Z, Weroński P. Application of the DLVO theory for particle deposition problems[J]. Advances in Colloid and Interface Science, 1999, 83(1/2/3): 137-226. |
47 | Churaev N V. The DLVO theory in Russian colloid science[J]. Advances in Colloid and Interface Science, 1999, 83(1/2/3): 19-32. |
48 | Croll S. DLVO theory applied to TiO2 pigments and other materials in latex paints[J]. Progress in Organic Coatings, 2002, 44(2): 131-146. |
49 | Boinovich L. DLVO forces in thin liquid films beyond the conventional DLVO theory[J]. Current Opinion in Colloid & Interface Science, 2010, 15(5): 297-302. |
50 | Chen A, Jing Y, Sang F N, et al. Determination of the interaction mechanism of 10 µm oil-in-water emulsion droplets using optical tweezers[J]. Chemical Engineering Science, 2018, 181: 341-347. |
51 | Chen A, Li S W, Sang F N, et al. Interactions between micro-scale oil droplets in aqueous surfactant solution determined using optical tweezers[J]. Journal of Colloid and Interface Science, 2018, 532: 128-135. |
52 | Chen A, Li S W, Jing D, et al. Interactions between colliding oil drops coated with non-ionic surfactant determined using optical tweezers[J]. Chemical Engineering Science, 2019, 193: 276-281. |
53 | Chen A, Li S W, Xu J H. A novel approach to study the interactions between polymeric stabilized micron-sized oil droplets by optical tweezers[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1368-1374. |
54 | Chen A, Wang F J, Zhou Y W, et al. In situ measurements of interactions between switchable surface-active colloid particles using optical tweezers[J]. Langmuir, 2020, 36(17): 4664-4670. |
55 | Abbondanzieri E A, Greenleaf W J, Shaevitz J W, et al. Direct observation of base-pair stepping by RNA polymerase[J]. Nature, 2005, 438(7067): 460-465. |
56 | Zhong M C, Wei X B, Zhou J H, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768. |
57 | Yehoshua S, Pollari R, Milstein J N. Axial optical traps: a new direction for optical tweezers[J]. Biophysical Journal, 2015, 108(12): 2759-2766. |
58 | Killian J L, Ye F, Wang M D. Optical tweezers: a force to be reckoned with[J]. Cell, 2018, 175(6): 1445-1448. |
59 | Bernecker C, Lima M A R B F, Ciubotaru C D, et al. Biomechanics of ex vivo-generated red blood cells investigated by optical tweezers and digital holographic microscopy[J]. Cells, 2021, 10(3): 552. |
60 | Balasuriya T S, Dagastine R R. Interaction forces between bubbles in the presence of novel responsive peptide surfactants[J]. Langmuir, 2012, 28(50): 17230-17237. |
61 | Tabor R F, Wu C, Grieser F, et al. Measurement of the hydrophobic force in a soft matter system[J]. The Journal of Physical Chemistry Letters, 2013, 4(22): 3872-3877. |
62 | Mettu S, Zhou M F, Tardy B L, et al. Temperature dependent mechanical properties of air, oil and water filled microcapsules studied by atomic force microscopy[J]. Polymer, 2016, 102: 333-341. |
63 | Mettu S, Berry J D, Dagastine R R. Charge and film drainage of colliding oil drops coated with the nonionic surfactant C12E5[J]. Langmuir, 2017, 33(20): 4913-4923. |
64 | Shi C, Chan D Y C, Liu Q X, et al. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy[J]. The Journal of Physical Chemistry C, 2014, 118(43): 25000-25008. |
65 | Cui X, Shi C, Xie L, et al. Probing interactions between air bubble and hydrophobic polymer surface: impact of solution salinity and interfacial nanobubbles[J]. Langmuir, 2016, 32(43): 11236-11244. |
66 | Wang J Y, Li J M, Xie L, et al. Interactions between elemental selenium and hydrophilic/hydrophobic surfaces: direct force measurements using AFM[J]. Chemical Engineering Journal, 2016, 303: 646-654. |
67 | Shi C, Zhang L, Xie L, et al. Surface interaction of water-in-oil emulsion droplets with interfacially active asphaltenes[J]. Langmuir, 2017, 33(5): 1265-1274. |
68 | Xie L, Shi C, Cui X, et al. Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids[J]. Langmuir, 2017, 33(16): 3911-3925. |
69 | Zeng H B, Wu K L, Cui X, et al. Wettability effect on nanoconfined water flow: insights and perspectives[J]. Nano Today, 2017, 16: 7-8. |
70 | Cui X, Liu J, Xie L, et al. Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity[J]. Angewandte Chemie International Edition, 2018, 57(37): 11903-11908. |
71 | Mao X H, Gong L, Xie L, et al. Novel Fe3O4 based superhydrophilic core-shell microspheres for breaking asphaltenes-stabilized water-in-oil emulsion[J]. Chemical Engineering Journal, 2019, 358: 869-877. |
[1] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[2] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[3] | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
[4] | 兰文杰, 胡晓洁, 蔡迪宗. 界面探针法测量液滴与固体壁面间相互作用力[J]. 化工学报, 2022, 73(3): 1119-1126. |
[5] | 杨英杰, 杨赫, 朱家龙, 郭双淇, 尚妍, 李扬, 靳立军, 胡浩权. 淖毛湖煤慢速热解过程官能团相互作用[J]. 化工学报, 2022, 73(2): 865-875. |
[6] | 魏小兰, 谢佩, 王维龙, 陆建峰, 丁静. 含钙三元氯化物体系相图计算与熔盐热稳定性[J]. 化工学报, 2021, 72(6): 3074-3083. |
[7] | 方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723. |
[8] | 王韬, 刘向阳, 何茂刚. 离子液体[bmim][Tf2N]的分子动力学模拟[J]. 化工学报, 2019, 70(S2): 258-264. |
[9] | 于冬雪, 惠贺龙, 何京东, 李松庚. 塑料与蜡(重油)催化共热解相互作用研究[J]. 化工学报, 2019, 70(8): 2971-2980. |
[10] | 陆小华,董依慧,安蓉,吴楠桦,吉晓燕,戴中洋,朱育丹,冯新. 复杂流体-固体界面相互作用热力学机制[J]. 化工学报, 2019, 70(10): 3677-3689. |
[11] | 何媚质, 杨鲁伟, 张振涛, 杨俊玲. 纳米材料/十四酸混合相变蓄热材料的制备与特性[J]. 化工学报, 2018, 69(9): 4097-4105. |
[12] | 费兆阳, 李磊, 成超, 楼家伟, 汤吉海, 陈献, 崔咪芬, 乔旭. 铈锆复合氧化物催化HCl氧化中相互作用机制[J]. 化工学报, 2018, 69(12): 5081-5089. |
[13] | 梁二艳, 张因, 赵丽丽, 徐亚琳, 赵永祥. 甲醇热制备四方相ZrO2及其负载镍催化剂的顺酐加氢性能[J]. 化工学报, 2017, 68(6): 2352-2358. |
[14] | 杨悦锁, 陈煜, 李盼盼, 武宇辉, 赵传起. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J]. 化工学报, 2017, 68(6): 2219-2232. |
[15] | 李天涛, 郭飞强, 王岩, 郭成龙, 董玉平. 微型流化床内松木屑和煤泥等温混合热解特性[J]. 化工学报, 2017, 68(10): 3923-3933. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||