化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1651-1659.DOI: 10.11949/0438-1157.20230086
葛运通1(), 王玮1(), 李楷1,2, 肖帆1, 于志鹏1, 宫敬1
收稿日期:
2023-02-08
修回日期:
2023-03-29
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
王玮
作者简介:
葛运通(1995—),男,博士研究生,13383377546@163.com
基金资助:
Yuntong GE1(), Wei WANG1(), Kai LI1,2, Fan XIAO1, Zhipeng YU1, Jing GONG1
Received:
2023-02-08
Revised:
2023-03-29
Online:
2023-04-05
Published:
2023-06-02
Contact:
Wei WANG
摘要:
多相分散体系广泛存在于石油、化工、新能源等众多领域,研究其微观力学作用机理具有重要意义,但对微米级液滴与表面间作用力的直接测量仍存在挑战。利用原子力显微镜液滴探针方法测量了水溶液中微米级油滴与羟基化和氨基化改性二氧化硅表面间的微观作用力。结果表明,在高盐浓度、酸性环境下由于双电层斥力被削弱,油滴更容易在范德华引力下与表面聚结;相较于羟基化二氧化硅表面,油滴与氨基化二氧化硅表面更容易聚结;阴离子表面活性剂十二烷基硫酸钠对油滴与表面的阻聚效果优于阳离子型表面活性剂十六烷基三甲基溴化铵;聚合物Pluronic F68产生的空间位阻效应有助于油滴与表面间的稳定。研究成果有助于进一步揭示油滴与表面间的相互作用机理。
中图分类号:
葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659.
Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems[J]. CIESC Journal, 2023, 74(4): 1651-1659.
图1 AFM测量水溶液中油滴与不同电性表面作用力的示意图(插图为AFM液滴探针俯视图)
Fig.1 Schematic of the AFM experiment measuring oil droplets and surfaces with different surface potentials in aqueous solutions (inset is an overhead photo of the AFM droplet probe)
图4 1.0 mmol/L NaCl溶液中(pH=7)油滴与羟基化二氧化硅表面不同碰撞速度下的作用力曲线
Fig.4 Interaction force profiles between oil droplets and the hydroxylated silica surface in 1.0 mmol/L NaCl solution (pH=7) at different collision velocities
图5 不同浓度NaCl溶液中(pH=7)油滴与氨基化/羟基化二氧化硅表面的作用力曲线
Fig.5 Interaction force profiles between oil droplets and aminated or hydroxylated silica surfaces in NaCl solutions (pH=7) at different salinities
图6 不同浓度NaCl溶液中(pH=3)油滴与氨基化/羟基化二氧化硅表面的作用力曲线
Fig.6 Interaction force profiles between oil droplets and aminated or hydroxylated silica surfaces in NaCl solutions (pH=3) at different salinities
图7 不同浓度NaCl溶液中(pH=12)油滴与氨基化/羟基化二氧化硅表面的作用力曲线
Fig.7 Interaction force profiles between oil droplets and aminated or hydroxylated silica surfaces in NaCl solutions(pH=12) at different salinities
图9 在分别加入0.1 mmol/L CTAB、SDS、F68的100.0 mmol/L NaCl溶液中(pH=3)正十四烷油滴与氨基化/羟基化二氧化硅表面的作用力曲线
Fig.9 Interaction force profiles between oil droplets and aminated or hydroxylated silica surfaces in 100.0 mmol/L NaCl solutions (pH=3) with 0.1 mmol/L CTAB, SDS, and F68
1 | Eshrati M, Al-Hashmi A R, Al-Wahaibi T, et al. Drag reduction using high molecular weight polyacrylamides during multiphase flow of oil and water: a parametric study[J]. Journal of Petroleum Science and Engineering, 2015, 135: 403-409. |
2 | Deng T T, Liu X T, Zhang Y W, et al. Erythrocytes number in healthy individuals and anaemia laminar blood flow in the ulnar vein in both men and women: the analysis of multi-phase heat transfer for medical application[J]. Alexandria Engineering Journal, 2022, 61(12): 10099-10107. |
3 | Kim D H, Zohdi T I, Singh R P. Modeling, simulation and machine learning for rapid process control of multiphase flowing foods[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113286. |
4 | Helvaci H U, Khan Z A. Mathematical modelling and simulation of multiphase flow in a flat plate solar energy collector[J]. Energy Conversion and Management, 2015, 106: 139-150. |
5 | Wang D M, Seright R S. Examination of literature on colloidal dispersion gels for oil recovery[J]. Petroleum Science, 2021, 18(4): 1097-1114. |
6 | 刘慧卿, 东晓虎. 稠油热复合开发提高采收率技术现状与趋势[J]. 石油科学通报, 2022, 7(2): 174-184. |
Liu H Q, Dong X H. Current status and future trends of hybrid thermal EOR processes in heavy oil reservoirs[J]. Petroleum Science Bulletin, 2022, 7(2): 174-184. | |
7 | Zhang D W, Wang G, Zhi S D, et al. Superhydrophilicity and underwater superoleophobicity TiO2/Al2O3 composite membrane with ultra low oil adhesion for highly efficient oil-in-water emulsions separation[J]. Applied Surface Science, 2018, 458: 157-165. |
8 | Dong X X, Zhao H, Wang Z H, et al. Gecko-inspired composite micro-pillars with both robust adhesion and enhanced dry self-cleaning property[J]. Chinese Chemical Letters, 2019, 30(12): 2333-2337. |
9 | Liu X Y, Wei Y Q, Tao F R, et al. All-water-based superhydrophobic coating with reversible wettability for oil-water separation and wastewater purification[J]. Progress in Organic Coatings, 2022, 165: 106726. |
10 | 柴汝宽, 刘月田, 何宇廷. 水驱过程中原油组分变化规律及机理[J]. 石油科学通报, 2021, 6(1): 114-126. |
Chai R K, Liu Y T, He Y T. Alteration mechanisms of crude oil components in water-flooding[J]. Petroleum Science Bulletin, 2021, 6(1): 114-126. | |
11 | Yang D L, Xie L, Mao X H, et al. Probing hydrophobic interactions between polymer surfaces and air bubbles or oil droplets: effects of molecular weight and surfactants[J]. Langmuir, 2022, 38(17): 5257-5268. |
12 | Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie International Edition, 2016, 55(48): 15017-15021. |
13 | Chan D Y C, Horn R G. The drainage of thin liquid films between solid surfaces[J]. The Journal of Chemical Physics, 1985, 83(10): 5311-5324. |
14 | Mohamed-Kassim Z, Longmire E K. Drop coalescence through a liquid/liquid interface[J]. Physics of Fluids, 2004, 16(7): 2170-2181. |
15 | Berberović E, van Hinsberg N P, Jakirlić S, et al. Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution[J]. Physical Review E, 2009, 79(3 Pt 2): 036306. |
16 | 兰文杰, 胡晓洁, 蔡迪宗. 界面探针法测量液滴与固体壁面间相互作用力[J]. 化工学报, 2022, 73(3): 1119-1126. |
Lan W J, Hu X J, Cai D Z. Determination of interaction force between droplet and solid surface using droplet probe[J]. CIESC Journal, 2022, 73(3): 1119-1126. | |
17 | Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930. |
18 | Ducker W A, Senden T J, Pashley R M. Measurement of forces in liquids using a force microscope[J]. Langmuir, 1992, 8(7): 1831-1836. |
19 | Lockie H J, Manica R, Stevens G W, et al. Precision AFM measurements of dynamic interactions between deformable drops in aqueous surfactant and surfactant-free solutions[J]. Langmuir, 2011, 27(6): 2676-2685. |
20 | Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J]. Progress in Surface Science, 1993, 43(1/2/3/4): 30-59. |
21 | Li K, Wang W, Xiao F, et al. Atomic force microscopy study of non-DLVO interactions between drops and bubbles[J]. Langmuir, 2021, 37(22): 6830-6837. |
22 | Gong L, Zhang J W, Wang W D, et al. Ion-specific effect on self-cleaning performances of polyelectrolyte-functionalized membranes and the underlying nanomechanical mechanism[J]. Journal of Membrane Science, 2021, 634: 119408. |
23 | 曾祥轩. APTES自组装单分子膜的制备和表面性质的表征[D]. 杭州: 浙江大学, 2008. |
Zeng X X. Preparation and characterization of APTES SAM[D]. Hangzhou: Zhejiang University, 2008. | |
24 | Jin H, Wang W, Chang H L, et al. Effects of salt-controlled self-assembly of triblock copolymers F68 on interaction forces between oil drops in aqueous solution[J]. Langmuir, 2017, 33(51): 14548-14555. |
25 | 乔冰, 高晗, 王亭杰, 等. 二氧化硅表面修饰硅烷偶联剂APTS的过程和机制[J]. 化工学报, 2014, 65(7): 2629-2637. |
Qiao B, Gao H, Wang T J, et al. Process and mechanism of surface modification of silica with silane coupling agent APTS[J]. CIESC Journal, 2014, 65(7): 2629-2637. | |
26 | Chan D Y C, Klaseboer E, Manica R. Film drainage and coalescence between deformable drops and bubbles[J]. Soft Matter, 2011, 7(6): 2235-2264. |
27 | Dagastine R R, Manica R, Carnie S L, et al. Dynamic forces between two deformable oil droplets in water[J]. Science, 2006, 313(5784): 210-213. |
28 | Xie L, Shi C, Wang J Y, et al. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope[J]. Langmuir, 2015, 31(8): 2438-2446. |
29 | Diao Y J, Han M W, Lopez-Berganza J A, et al. Reconciling DLVO and non-DLVO forces and their implications for ion rejection by a polyamide membrane[J]. Langmuir, 2017, 33(36): 8982-8992. |
30 | Tabor R F, Grieser F, Dagastine R R, et al. Measurement and analysis of forces in bubble and droplet systems using AFM[J]. Journal of Colloid and Interface Science, 2012, 371(1): 1-14. |
31 | Wiącek A E. Comparison of n-tetradecane/electrolyte emulsions properties stabilized by DPPC and DPPC vesicles in the electrolyte solution[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 108-115. |
32 | Muneer R, Hashmet M R, Pourafshary P. Fine migration control in sandstones: surface force analysis and application of DLVO theory[J]. ACS Omega, 2020, 5(49): 31624-31639. |
33 | de Vos W M, Cattoz B, Avery M P, et al. Adsorption and surfactant-mediated desorption of poly(vinylpyrrolidone) on plasma-and piranha-cleaned silica surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(28): 8425-8431. |
34 | 柳丹丹, 崔静磊, 方莉, 等. 硅烷偶联剂改性粉煤灰基白炭黑及其分散性能[J]. 精细化工, 2019, 36(4): 588-594. |
Liu D D, Cui J L, Fang L, et al. Preparation of white carbon black from fly ash modified with silane coupling agents and its dispersion properties[J]. Fine Chemicals, 2019, 36(4): 588-594. | |
35 | Ge Y T, Wang W, Li K, et al. Anti-oil-adhesion property of superhydrophilic/underwater superoleophobic phytic acid-FeⅢ complex coatings[J]. Langmuir, 2023, 39(1): 411-422. |
36 | Tabor R F, Wu C, Lockie H, et al. Homo-and hetero-interactions between air bubbles and oil droplets measured by atomic force microscopy[J]. Soft Matter, 2011, 7(19): 8977-8983. |
37 | Hartley P G, Larson I, Scales P J. Electrokinetic and direct force measurements between silica and mica surfaces in dilute electrolyte solutions[J]. Langmuir, 1997, 13(8): 2207-2214. |
38 | Almobarky M A, AlYousif Z, Schechter D. Gas/water foams stabilized with a newly developed anionic surfactant for gas mobility control applications[J]. Petroleum Science, 2020, 17(4): 1025-1036. |
39 | 王洪涛, 冯丽娟, 何萌, 等. 不同烷基链长的聚氧乙烯醚萘类发泡剂合成及性能研究[J]. 石油科学通报, 2020, 5(4): 587-596. |
Wang H T, Feng L J, He M, et al. Preparation and properties of sodium polyoxyethylene ether naphthalene sulfonate with different chain-length alkyl groups[J]. Petroleum Science Bulletin, 2020, 5(4): 587-596. | |
40 | Hwang Y, Lee J K, Lee J K, et al. Production and dispersion stability of nanoparticles in nanofluids[J]. Powder Technology, 2008, 186(2): 145-153. |
41 | Yi S Y, Babadagli T, Li H Z. Stabilization of nickel nanoparticle suspensions with the aid of polymer and surfactant: static bottle tests and dynamic micromodel flow tests[J]. Petroleum Science, 2020, 17(4): 1014-1024. |
42 | Abdelmonem A, Zhang Y C, Braunschweig B, et al. Adsorption of CTAB on sapphire-c at high pH: surface and zeta potential measurements combined with sum-frequency and second-harmonic generation[J]. Langmuir, 2022, 38(11): 3380-3391. |
43 | Torcello-Gómez A, Maldonado-Valderrama J, Jódar-Reyes A B, et al. Interactions between Pluronics (F127 and F68) and bile salts (NaTDC) in the aqueous phase and the interface of oil-in-water emulsions[J]. Langmuir, 2013, 29(8): 2520-2529. |
44 | Schoeler A M, Josephides D N, Sajjadi S, et al. Controlling the surface charge of water droplets in non-polar oils[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461: 18-21. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[4] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[7] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[8] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[9] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[10] | 戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
[11] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[12] | 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773. |
[13] | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
[14] | 唐翠萍, 张雅楠, 梁德青, 李祥. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报, 2022, 73(5): 2130-2139. |
[15] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||