化工学报 ›› 2021, Vol. 72 ›› Issue (12): 5936-5954.DOI: 10.11949/0438-1157.20211345
收稿日期:
2021-09-16
修回日期:
2021-11-25
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
王铁峰
作者简介:
张华海(1995—),男,博士研究生,基金资助:
Huahai ZHANG(),Yuelin WANG,Banghao LI,Tiefeng WANG()
Received:
2021-09-16
Revised:
2021-11-25
Online:
2021-12-05
Published:
2021-12-22
Contact:
Tiefeng WANG
摘要:
综述了充分发展湍流中气泡破碎的机理和模型,将其机理归纳为湍流涡碰撞、黏性剪切、尾涡剪切脱落过程和界面不稳定性四类。对文献中气泡破碎速率和子气泡大小分布的预测模型进行了系统总结。分析讨论了现有气泡破碎模型的发展和局限性,并提出了未来的发展方向。同时,也综述了湍流中单气泡破碎的实验研究,依据产生湍流的方法归纳为四种情况:增大液体流速产生湍流,采用内构件产生湍流,搅拌产生湍流,以及圆锥反应器结合搅拌产生湍流。总结了现有气泡破碎实验的进展和局限,并进行了分析和展望。最后,通过将文献中气泡破碎速率模型预测值和实验数据进行对比,表明文献中多个破碎模型已经有了较好的预测能力。
中图分类号:
张华海, 王悦琳, 李邦昊, 王铁峰. 湍流中气泡破碎建模与实验研究进展[J]. 化工学报, 2021, 72(12): 5936-5954.
Huahai ZHANG, Yuelin WANG, Banghao LI, Tiefeng WANG. Review of bubble breakup modelling and experimental study in turbulent flow[J]. CIESC Journal, 2021, 72(12): 5936-5954.
1 | Jia H, Lian P, Leng X, et al. Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery[J]. Fuel, 2019, 258: 116156. |
2 | Ruzicka M C, Vecer M M, Orvalho S, et al. Effect of surfactant on homogeneous regime stability in bubble column[J]. Chemical Engineering Science, 2008, 63(4): 951-967. |
3 | Wu Y N, Fang S S, Zhang K Y, et al. Stability mechanism of nitrogen foam in porous media with silica nanoparticles modified by cationic surfactants[J]. Langmuir, 2018, 34(27): 8015-8023. |
4 | Zhao M W, Wang R Y, Dai C L, et al. Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: influence of the alkane chain length[J]. Chemical Engineering Science, 2019, 206: 203-211. |
5 | Petkova B, Tcholakova S, Chenkova M, et al. Foamability of aqueous solutions: role of surfactant type and concentration[J]. Advances in Colloid and Interface Science, 2020, 276: 102084. |
6 | Ramezani M, Legg M J, Haghighat A, et al. Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor[J]. Chemical Engineering Journal, 2017, 319: 288-296. |
7 | AlYousef Z A, Almobarky M A, Schechter D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface Science, 2018, 511: 365-373. |
8 | Bera B, Carrier O, Backus E H G, et al. Counteracting interfacial energetics for wetting of hydrophobic surfaces in the presence of surfactants[J]. Langmuir, 2018, 34(41): 12344-12349. |
9 | Tanaka S, Kastens S, Fujioka S, et al. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt[J]. Chemical Engineering Journal, 2020, 387: 121246. |
10 | 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495. |
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495. | |
11 | Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637. |
12 | Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. |
13 | Wang T F, Wang J F. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2007, 62(24): 7107-7118. |
14 | Zhang H H, Guo K Y, Wang Y L, et al. Numerical simulations of the effect of liquid viscosity on gas-liquid mass transfer of a bubble column with a CFD-PBM coupled model[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120229. |
15 | Zhang H H, Sayyar A, Wang Y L, et al. Generality of the CFD-PBM coupled model for bubble column simulation[J]. Chemical Engineering Science, 2020, 219: 115514. |
16 | Shu S L, Vidal D, Bertrand F, et al. Multiscale multiphase phenomena in bubble column reactors: a review[J]. Renewable Energy, 2019, 141: 613-631. |
17 | Hulburt H M, Katz S. Some problems in particle technology: a statistical mechanical formulation[J]. Chemical Engineering Science, 1964, 19(8): 555-574. |
18 | Wang T F, Wang J F, Jin Y. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140. |
19 | Ramkrishna D, Mahoney A W. Population balance modeling. Promise for the future[J]. Chemical Engineering Science, 2002, 57(4): 595-606. |
20 | Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
21 | Solsvik J, Tangen S, Jakobsen H A. On the constitutive equations for fluid particle breakage[J]. Reviews in Chemical Engineering, 2013, 29(5): 241-356. |
22 | Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions[J]. Chemical Engineering Science, 1977, 32(11): 1289-1297. |
23 | Chatzi E G, Gavrielides A D, Kiparissides C. Generalized model for prediction of the steady-state drop size distributions in batch stirred vessels[J]. Industrial & Engineering Chemistry Research, 1989, 28(11): 1704-1711. |
24 | Narsimhan G, Gupta J P, Ramkrishna D. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions[J]. Chemical Engineering Science, 1979, 34(2): 257-265. |
25 | Alopaeus V, Koskinen J, Keskinen K I, et al. Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank (Part 2): Parameter fitting and the use of the multiblock model for dense dispersions[J]. Chemical Engineering Science, 2002, 57(10): 1815-1825. |
26 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
27 | Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
28 | Tsouris C, Tavlarides L L. Breakage and coalescence models for drops in turbulent dispersions[J]. AIChE Journal, 1994, 40(3): 395-406. |
29 | Lee C H, Erickson L E, Glasgow L A. Bubble breakup and coalescence in turbulent gas-liquid dispersions[J]. Chemical Engineering Communications, 1987, 59(1/2/3/4/5/6): 65-84. |
30 | Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns[J]. Chemical Engineering Science, 2001, 56(3): 1159-1166. |
31 | Martínez-Bazán C, Montañés J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow(Part 2): Size PDF of the resulting daughter bubbles[J]. Journal of Fluid Mechanics, 1999, 401: 183-207. |
32 | Martínez-Bazán C, Montañés J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow(Part 1): Breakup frequency[J]. Journal of Fluid Mechanics, 1999, 401: 157-182. |
33 | Razzaghi K, Shahraki F. Theoretical model for multiple breakup of fluid particles in turbulent flow field[J]. AIChE Journal, 2016, 62(12): 4508-4525. |
34 | Zhao H, Ge W. A theoretical bubble breakup model for slurry beds or three-phase fluidized beds under high pressure[J]. Chemical Engineering Science, 2007, 62(1/2): 109-115. |
35 | Andersson R, Andersson B. Modeling the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2031-2038. |
36 | Hagesaether L, Jakobsen H A, Svendsen H F. A model for turbulent binary breakup of dispersed fluid particles[J]. Chemical Engineering Science, 2002, 57(16): 3251-3267. |
37 | Han L C, Luo H A, Liu Y J. A theoretical model for droplet breakup in turbulent dispersions[J]. Chemical Engineering Science, 2011, 66(4): 766-776. |
38 | Xing C T, Wang T F, Guo K Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403. |
39 | Han L C, Gong S G, Li Y Q, et al. A novel theoretical model of breakage rate and daughter size distribution for droplet in turbulent flows[J]. Chemical Engineering Science, 2013, 102: 186-199. |
40 | Das S K. A new turbulence-induced theoretical breakage kernel in the context of the population balance equation[J]. Chemical Engineering Science, 2016, 152: 140-150. |
41 | Zhang H H, Wang Y L, Sayyar A, et al. A CFD-PBM coupled model under entire turbulent spectrum for simulating a bubble column with highly viscous media[J]. AIChE Journal, 2021: e17473. |
42 | Zhang H H, Yang G Y, Sayyar A, et al. An improved bubble breakup model in turbulent flow[J]. Chemical Engineering Journal, 2020, 386: 121484. |
43 | Shi W B, Yang J, Li G, et al. Modelling of breakage rate and bubble size distribution in bubble columns accounting for bubble shape variations[J]. Chemical Engineering Science, 2018, 187: 391-405. |
44 | Luo H. Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim:The University of Trondheim, 1993. |
45 | Han L C, Gong S G, Ding Y W, et al. Consideration of low viscous droplet breakage in the framework of the wide energy spectrum and the multiple fragments[J]. AIChE Journal, 2015, 61(7): 2147-2168. |
46 | Andersson R, Andersson B. On the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2020-2030. |
47 | Ravelet F, Colin C, Risso F. On the dynamics and breakup of a bubble rising in a turbulent flow[J]. Physics of Fluids, 2011, 23(10): 103301. |
48 | Solsvik J, Jakobsen H A. A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence[J]. AIChE Journal, 2016, 62(5): 1795-1820. |
49 | Solsvik J, Skjervold V T, Han L C, et al. A theoretical study on drop breakup modeling in turbulent flows: the inertial subrange versus the entire spectrum of isotropic turbulence[J]. Chemical Engineering Science, 2016, 149: 249-265. |
50 | Karimi M, Andersson R. An exploratory study on fluid particles breakup rate models for the entire spectrum of turbulent energy[J]. Chemical Engineering Science, 2018, 192: 850-863. |
51 | Kocamustafaogullari G, Ishii M. Foundation of the interfacial area transport equation and its closure relations[J]. International Journal of Heat and Mass Transfer, 1995, 38(3): 481-493. |
52 | Renardy Y Y, Cristini V. Scalings for fragments produced from drop breakup in shear flow with inertia[J]. Physics of Fluids, 2001, 13(8): 2161-2164. |
53 | Renardy Y Y, Cristini V. Effect of inertia on drop breakup under shear[J]. Physics of Fluids, 2000, 13(1): 7-13. |
54 | Fu X Y, Ishii M. Two-group interfacial area transport in vertical air-water flow (Ⅰ):Mechanistic model [J]. Nuclear Engineering and Design, 2003, 219(2): 169-190. |
55 | Fu X Y, Ishii M. Two-group interfacial area transport in vertical air-water flow(Ⅱ):Model evaluation[J]. Nuclear Engineering and Design, 2003, 219(2): 169-190. |
56 | Letzel M H, Schouten J C, van den Bleek C M, et al. Effect of gas density on large-bubble holdup in bubble column reactors[J]. AIChE Journal, 1998, 44(10): 2333-2336. |
57 | Sun X D, Kim S, Ishii M, et al. Modeling of bubble coalescence and disintegration in confined upward two-phase flow[J]. Nuclear Engineering and Design, 2004, 230(1/2/3): 3-26. |
58 | Wang T F, Wang J F, Jin Y. Theoretical prediction of flow regime transition in bubble columns by the population balance model[J]. Chemical Engineering Science, 2005, 60(22): 6199-6209. |
59 | Wang T F, Wang J F, Jin Y. Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models[J]. Industrial & Engineering Chemistry Research, 2005, 44(19): 7540-7549. |
60 | Wilkinson P M, van Schayk A, Spronken J P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7): 1213-1226. |
61 | Wilkinson P M, von Dierendonck L L. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns[J]. Chemical Engineering Science, 1990, 45(8): 2309-2315. |
62 | Hesketh R P, Etchells A W, Russell T W F. Experimental observations of bubble breakage in turbulent flow[J]. Industrial & Engineering Chemistry Research, 1991, 30(5): 835-841. |
63 | Vankova N, Tcholakova S, Denkov N D, et al. Emulsification in turbulent flow (2): Breakage rate constants[J]. Journal of Colloid and Interface Science, 2007, 313(2): 612-629. |
64 | Tcholakova S, Vankova N, Denkov N D, et al. Emulsification in turbulent flow(3): Daughter drop-size distribution[J]. Journal of Colloid and Interface Science, 2007, 310(2): 570-589. |
65 | Vankova N, Tcholakova S, Denkov N D, et al. Emulsification in turbulent flow (1): Mean and maximum drop diameters in inertial and viscous regimes[J]. Journal of Colloid and Interface Science, 2007, 312(2): 363-380. |
66 | Vejražka J, Zedníková M, Stanovský P. Experiments on breakup of bubbles in a turbulent flow[J]. AIChE Journal, 2018, 64(2): 740-757. |
67 | Martı́nez-Bazán C, Montañés J L, Lasheras J C. Bubble size distribution resulting from the breakup of an air cavity injected into a turbulent water jet[J]. Physics of Fluids, 1999, 12(1): 145-148. |
68 | Eastwood C D, Armi L, Lasheras J C. The breakup of immiscible fluids in turbulent flows[J]. Journal of Fluid Mechanics, 2004, 502: 309-333. |
69 | Risso F, Fabre J. Oscillations and breakup of a bubble immersed in a turbulent field[J]. Journal of Fluid Mechanics, 1998, 372: 323-355. |
70 | Hasan B O. Experimental study on the bubble breakage in a stirred tank (2): Local dependence of breakage events[J]. Experimental Thermal and Fluid Science, 2018, 96: 48-62. |
71 | Hasan B O. Experimental study on the bubble breakage in a stirred tank(1): Mechanism and effect of operating parameters[J]. International Journal of Multiphase Flow, 2017, 97: 94-108. |
72 | Solsvik J, Jakobsen H A. Single air bubble breakup experiments in stirred water tank[J]. International Journal of Chemical Reactor Engineering, 2015, 13(4): 477-491. |
73 | Wichterle K, Wichterlová J, Kulhánková L. Breakup of bubbles rising in liquids of low and moderate viscosity[J]. Chemical Engineering Communications, 2005, 192(5): 550-556. |
74 | Zednikova M, Stanovsky P, Travnickova T, et al. Experiments on bubble breakup induced by collision with a vortex ring[J]. Chemical Engineering & Technology, 2019, 42(4): 843-850. |
75 | Shuai Y, Wang X Y, Huang Z L, et al. Experimental measurement of bubble breakup in a jet bubbling reactor[J]. AIChE Journal, 2021, 67(1): e17062. |
76 | Zhang H H, Wang Y L, Sayyar A, et al. Experimental study on breakup of a single bubble in a stirred tank: effect of gas density and liquid properties[J]. AIChE Journal, 2021: e17511. |
77 | Zaccone A, Gäbler A, Maaß S, et al. Drop breakage in liquid-liquid stirred dispersions: modelling of single drop breakage[J]. Chemical Engineering Science, 2007, 62(22): 6297-6307. |
[1] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[2] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[3] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
[4] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[5] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[6] | 张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564. |
[7] | 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426. |
[8] | 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588. |
[9] | 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963. |
[10] | 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
[11] | 任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
[12] | 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126. |
[13] | 王芳,贾胜坤,张会书,袁希钢,余国琮. 基于实验数据的湍流扩散POD模态分析[J]. 化工学报, 2021, 72(9): 4531-4543. |
[14] | 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303. |
[15] | 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||