1 |
Bar-Zeev Y, Lim L L, Bonevski B, et al. Nicotine replacement therapy for smoking cessation during pregnancy[J]. Medical Journal of Australia, 2018, 208(1): 46-51.
|
2 |
Tulloch H E, Pipe A L, Els C, et al. Flexible, dual-form nicotine replacement therapy or varenicline in comparison with nicotine patch for smoking cessation: a randomized controlled trial[J]. BMC Medicine, 2016, 14: 80.
|
3 |
Buszewski B, Bukowska M, Ligor M, et al. A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis[J]. Environmental Science and Pollution Research, 2019, 26(34): 34723-34740.
|
4 |
Radolinski J, Wu J X, Xia K, et al. Plants mediate precipitation-driven transport of a neonicotinoid pesticide[J]. Chemosphere, 2019, 222: 445-452.
|
5 |
Zhang Q Z, Du Y, Yu M L, et al. Controlled release of dinotefuran with temperature/pH-responsive chitosan-gelatin microspheres to reduce leaching risk during application[J]. Carbohydrate Polymers, 2022, 277: 118880.
|
6 |
杜康, 张尉, 顾丽莉, 等. 初烤烟叶中烟碱和新植二烯的提取工艺研究[J]. 核农学报, 2021, 35(6): 1394-1401.
|
|
Du K, Zhang W, Gu L L, et al. Study on the extraction process of nicotine and neophytadiene from primary flue-cured tobacco leaves[J]. Journal of Nuclear Agriculture, 2021, 35(6): 1394-1401.
|
7 |
Hu R S, Wang J, Li H, et al. Simultaneous extraction of nicotine and solanesol from waste tobacco materials by the column chromatographic extraction method and their separation and purification[J]. Separation and Purification Technology, 2015, 146: 1-7.
|
8 |
Liu S H, Tang W T, Yang Y H. Adsorption of nicotine in aqueous solution by a defective graphene oxide[J]. Science of the Total Environment, 2018, 643: 507-515.
|
9 |
Djapic N. Supercritical carbon dioxide extraction of nicotiana tabacum leaves: optimization of extraction yield and nicotine content[J]. Molecules, 2022, 27(23): 8328
|
10 |
Nguyen V T, Riaño S, Binnemans K. Separation of precious metals by split-anion extraction using water-saturated ionic liquids[J]. Green Chemistry, 2020, 22(23): 8375-8388.
|
11 |
Asumana C, Yu G R, Guan Y W, et al. Extractive denitrogenation of fuel oils with dicyanamide-based ionic liquids[J]. Green Chemistry, 2011, 13(11): 3300-3305.
|
12 |
Herce-Sesa B, Pirkwieser P, López-López J A, et al. Selective liquid phase micro-extraction of metal chloro-complexes from saline waters using ionic liquids[J]. Journal of Cleaner Production, 2020, 262: 121415.
|
13 |
Qadir M I, Zanatta M, Gil E S, et al. Photocatalytic reverse semi-combustion driven by ionic liquids[J]. ChemSusChem, 2019, 12(5): 1011-1016
|
14 |
Xu P, Liang S, Zong M H, et al. Ionic liquids for regulating biocatalytic process: achievements and perspectives[J]. Biotechnology Advances, 2021, 51: 107702.
|
15 |
Sheldon R A. Biocatalysis in ionic liquids: state-of-the-union[J]. Green Chemistry, 2021, 23(21): 8406-8427.
|
16 |
Liu H, Yu H J. Ionic liquids for electrochemical energy storage devices applications[J]. Journal of Materials Science & Technology, 2019, 35(4): 674-686.
|
17 |
Zakhidov D, Rehn D A, Reed E J, et al. Reversible electrochemical phase change in monolayer to bulk-like MoTe2 by ionic liquid gating[J]. ACS Nano, 2020, 14(3): 2894-2903.
|
18 |
Wu A Y, Li X Y, Lee D, et al. Thermoresponsive ionic liquid for electrochemical low-grade heat harvesting[J]. Nano Energy, 2023, 105: 108022.
|
19 |
AlSaleem S S, Zahid W M, AlNashef I M, et al. Solubility of halogenated hydrocarbons in hydrophobic ionic liquids: experimental study and COSMO-RS prediction[J]. Journal of Chemical & Engineering Data, 2015, 60(10): 2926-2936.
|
20 |
毛世越, 刘汉兰. 疏水性离子液体萃取氯酚类物质[J]. 化工学报, 2015, 66(S1): 260-264.
|
|
Mao S Y, Liu H L. Extraction of chlorophenols with imidazole-based hydrophobic ionic liquids[J]. CIESC Journal, 2015, 66(S1): 260-264.
|
21 |
Cai C Q, Hanada T, Fajar A T N, et al. An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(Ⅰ) from salt lakes[J]. Desalination, 2021, 509: 115073.
|
22 |
Yao C F, Hou Y C, Ren S H, et al. Selective extraction of aromatics from aliphatics using dicationic ionic liquid-solvent composite extractants[J]. Journal of Molecular Liquids, 2019, 291: 111267.
|
23 |
Fung V, Hu G X, Ganesh P, et al. Machine learned features from density of states for accurate adsorption energy prediction[J]. Nature Communications, 2021, 12: 88.
|
24 |
殷梦凡, 唐政, 张睿, 等. 离子液体液液萃取分离正辛烷/邻二甲苯[J]. 化工学报, 2021, 72(12): 6282-6290.
|
|
Yin M F, Tang Z, Zhang R, et al. Separation of n-octane and o-xylene by liquid-liquid extraction with ionic liquids[J]. CIESC Journal, 2021, 72(12): 6282-6290.
|
25 |
王仲来, 王云峰, 石恩林, 等. 阳离子取代基对离子液体气相色谱固定相保留性能的影响[J]. 色谱, 2018, 36(6): 557-565.
|
|
Wang Z L, Wang Y F, Shi E L, et al. The effect of cationic substituents on the retention performance of ionic liquid gas chromatography stationary phases[J]. Chromatography, 2018, 36(6): 557-565.
|
26 |
蒋举兴, 吴俊, 王明锋, 等. S-(-)-尼古丁在气相和水相存在形式的计算[J]. 中国烟草学报, 2016, 22(3): 1-9.
|
|
Jiang J X, Wu J, Wang M F, et al. Calculation of the existence forms of S - (-) - nicotine in the gas and water phases[J]. Chinese Journal of Tobacco, 2016, 22(3): 1-9.
|
27 |
Yavir K, Konieczna K, Marcinkowski Ł, et al. Ionic liquids in the microextraction techniques: the influence of ILs structure and properties[J]. TrAC Trends in Analytical Chemistry, 2020, 130: 115994.
|
28 |
Lu T A, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
|
29 |
Lu T, Chen Q X. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems[J]. Journal of Computational Chemistry, 2022, 43(8): 539-555.
|
30 |
Vennila P, Venkatesh G, Sixto-López Y, et al. Synthesis, spectroscopic characterization, molecular docking studies and DFT calculation of novel Mannich base 1-((4-ethylpiperazin-1-yl)(2-hydroxyphenyl)methyl)naphthalen-2-ol[J]. Journal of Molecular Structure, 2021, 1246: 131164.
|
31 |
Gassoumi B, Ben Mohamed F E, Castro M E, et al. In silico exploration of O—H…X2+ (X=Cu, Ag, Hg) interaction, targeted adsorption zone, charge density iso-surface, O—H proton analysis and topographic parameters theory for calix[6]arene and calix[8]arene as model[J]. Journal of Molecular Liquids, 2021, 334: 116127.
|