化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1149-1155.DOI: 10.11949/0438-1157.20201061
收稿日期:
2020-07-30
修回日期:
2020-10-27
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
奚桢浩
作者简介:
秦统(1990—),男,博士研究生,基金资助:
QIN Tong(),XI Zhenhao(),ZHAO Ling,YUAN Weikang
Received:
2020-07-30
Revised:
2020-10-27
Online:
2021-02-05
Published:
2021-02-05
Contact:
XI Zhenhao
摘要:
以含有亲水基团的偶氮二异丁脒盐酸盐(AIBA)为引发剂,以丙烯腈(AN)、丙烯酸甲酯(MA)和衣康酸(IA)为单体,β-巯基乙醇(β-ME)为分子量调节剂,采用水相沉淀聚合法制备了不同分子量的AN-MA-IA共聚物,研究了AIBA浓度、单体浓度和β-ME浓度对聚合过程的影响。根据AIBA分解半衰期和单体竞聚规律确定了聚合温度70℃和pH=4.7为较优反应条件。结果表明,AIBA浓度是影响聚合转化率的决定因素,通过调整AIBA浓度可以得到分子量60000~500000的PAN共聚物,较高的AIBA浓度会由于聚合场所的改变而造成分子量分散度小幅上升;浓度在0.2%(质量)以内时,分子量调节剂β-ME可以调控PAN共聚物的分子量,并使其分布变窄。
中图分类号:
秦统, 奚桢浩, 赵玲, 袁渭康. 水溶性偶氮引发剂AIBA引发AN-MA-IA水相沉淀共聚合的研究[J]. 化工学报, 2021, 72(2): 1149-1155.
QIN Tong, XI Zhenhao, ZHAO Ling, YUAN Weikang. Study on aqueous precipitation copolymerization of AN-MA-IA initiated by water-soluble azo initiator AIBA[J]. CIESC Journal, 2021, 72(2): 1149-1155.
图3 偶氮引发剂AIBA在不同反应温度下分解过程(虚线和转化率曲线的交点代表该温度下引发剂分解转化率达到50%时所需的时间,即半衰期)
Fig.3 Decomposition process of azo initiator AIBA at different reaction temperatures
pH | 单体浓度/ %(质量) | 单体转化率/% | 最终共聚物组成/%(质量) | ||
---|---|---|---|---|---|
AN | MA | IA | |||
2.5 | 8 | 66.0 | 93.39 | 3.18 | 3.43 |
4.7 | 8 | 62.0 | 95.07 | 3.11 | 1.82 |
2.5 | 15 | 76.6 | 94.33 | 2.94 | 2.73 |
4.7 | 15 | 69.7 | 94.96 | 3.36 | 1.68 |
表1 不同pH条件下PAN共聚物的组成
Table 1 Composition of PAN copolymer under different pH conditions
pH | 单体浓度/ %(质量) | 单体转化率/% | 最终共聚物组成/%(质量) | ||
---|---|---|---|---|---|
AN | MA | IA | |||
2.5 | 8 | 66.0 | 93.39 | 3.18 | 3.43 |
4.7 | 8 | 62.0 | 95.07 | 3.11 | 1.82 |
2.5 | 15 | 76.6 | 94.33 | 2.94 | 2.73 |
4.7 | 15 | 69.7 | 94.96 | 3.36 | 1.68 |
图4 单体浓度对转化率、分子量及分布的影响(pH=4.7,AN∶MA∶IA=95∶3.2∶1.8, I/M=1%(质量))
Fig.4 Effect of monomer concentration on conversion, molecular weight and its distribution
图5 AIBA浓度对转化率、分子量及分布的影响[pH=4.7, AN∶MA∶IA=95∶3.2∶1.8, M=15%(质量)]
Fig.5 Effect of AIBA concentration on conversion, molecular weight and its distribution
图6 β-ME浓度对转化率、分子量及分布的影响[pH=4.7, AN∶MA∶IA=95∶3.2∶1.8, M=15%(质量), I/M=1%(质量)]
Fig.6 Effect of β-ME concentration on conversion, molecular weight and its distribution
1 | Yusof N, Ismail A F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review[J]. Journal of Analytical and Applied Pyrolysis, 2012, 93: 1-13. |
2 | Khayyam H, Jazar R N, Nunna S, et al. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling[J]. Progress in Materials Science, 2020, 107: 100575. |
3 | Han Q, Zhang W, Han Z, et al. Preparation of PAN-based carbon fiber/Co3O4 composite and potential application in structural lithium-ion battery anodes[J]. Ionics, 2019, 25(11): 5333-5340. |
4 | Yoo S H, Park S, Park Y, et al. Facile method to fabricate carbon fibers from textile-grade polyacrylonitrile fibers based on electron-beam irradiation and its effect on the subsequent thermal stabilization process[J]. Carbon, 2017, 118: 106-113. |
5 | Liu D, Ouyang Q, Jiang X, et al. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber[J]. Polymer Degradation and Stability, 2018, 150: 57-66. |
6 | Kim S Y, Lee S, Park S, et al. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers[J]. Carbon, 2015, 94: 412-416. |
7 | Hao J, Liu Y, Lu C. Effect of acrylonitrile sequence distribution on the thermal stabilization reactions and carbon yields of poly(acrylonitrile-co-methyl acrylate)[J]. Polymer Degradation and Stability, 2018, 147: 89-96. |
8 | Jamil S N A M, Daik R, Ahmad I. Redox synthesis and thermal behaviorof acrylonitrile-methyl acrylate-fumaronitrile terpolymer as precursor for carbon fiber[J]. International Journal of Chemical Engineering and Applications, 2012, 3(6): 416-420. |
9 | Nguyen-Thai N U, Hong S C. Controlled architectures of poly(acrylonitrile-co-itaconic acid) for efficient structural transformation into carbon materials[J]. Carbon, 2014, 69: 571-581. |
10 | Can D S, Baskan H, Gumrukcu S, et al. A novel carbon nanofiber precursor: poly(acrylonitrile-co-vinylacetate-co-itaconic acid) terpolymer[J]. J. Nanosci. Nanotechnol., 2019, 19(7): 3844-3853. |
11 | Riahinezhad M, McManus N, Penlidis A. Effect of monomer concentration and pH on reaction kinetics and copolymer microstructure of acrylamide/acrylic acid copolymer[J]. Macromolecular Reaction Engineering, 2015, 9(2): 100-113. |
12 | Nagai S. Polymerization and polymers of itaconic acid derivatives(\Ⅴ). The copolymerization reactivity of itaconic acid in an aqueous solution[J]. Bulletin of the Chemical Society of Japan, 1963, 36: 1459-1463. |
13 | Zhao Y, Wang C, Wang Y, et al. Aqueous deposited copolymerization of acrylonitrile and itaconic acid[J]. Journal of Applied Polymer Science, 2009, 111(6): 3163-3169. |
14 | Bajaj P, Paliwal D, Gupta A. Acrylonitrile–acrylic acids copolymers(I). Synthesis and characterization[J]. Journal of Applied Polymer Science, 1993, 49(5): 823-833. |
15 | Yao Z, Chen H J, Qin Y X, et al. Effect of pH value on the aqueous precipitation copolymerization of acrylonitrile and vinyl acetate[J]. Journal of Applied Polymer Science, 2011, 119(3): 1486-1491. |
16 | Yoshida Y, Itoh N, Saito Y, et al. Application of water-soluble radical initiator, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, to a study of oxidative stress[J]. Free Radic Res, 2004, 38(4): 375-84. |
17 | Wahl R R, Madison S, DePinto R, et al. Mechanistic studies on the decomposition of water soluble azo-radical-initiators[J]. Journal of the Chemical Society, Perkin Transactions 2, 1998, 9: 2009-2018. |
18 | Werber J, Wang Y J, Milligan M, et al. Analysis of 2,2'-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions[J]. J. Pharm. Sci., 2011, 100(8): 3307-3315. |
19 | Xia J, Matyjaszewski K. Controlled "living" radical polymerization. Homogeneous reverse atom transfer radical polymerization using AIBN as the initiator[J]. Macromolecules, 1997, 30(25): 7692-7696. |
20 | Fu C, Yang B, Zhu C, et al. Synthesis of gradient copolymers by concurrent enzymatic monomer transformation and RAFT polymerization[J]. Polymer Chemistry, 2013, 4(24): 5720-5725. |
21 | Bajaj P, Sen K, Bahrami S H. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide[J]. Journal of Applied Polymer Science, 1996, 59(10): 1539-1550. |
22 | Upson R W. Aliphatic azo compounds having guanyl radicals on tertiary carbon attached to azo nitrogen: US2599299A[P]. 1952-06-03. |
23 | Kuang W, Li R, Zhang J, et al. Synthesis, characterization and properties of hydrophobically modified polyacrylamides[J]. Asian Journal of Chemistry, 2014, 26(1): 154-160. |
24 | 顾学芳, 田澍, 张跃华, 等. 水溶性偶氮引发剂引发丙烯酸钠的反相乳液聚合反应[J]. 化学世界, 2008, 49(12): 715-718. |
Gu X F, Tian S, Zhang Y H, et al. Studies on the inverse emulsion polymerization of sodium acrylate via water-soluble azo initiators [J]. Chemical World, 2008, 49(12): 715-718. | |
25 | 谢芝焕, 陈友汜, 欧阳琴, 等. 偶氮二氰基戊酸引发丙烯腈溶液聚合的研究[J]. 合成纤维工业, 2015, 38(3): 13-17. |
Xie Z H,Chen Y S,Ouyang Q, et al. Study on acrylonitrile solution polymerization initiated by azobiscyanopentanoic acid [J]. China Synthetic Fiber Industry, 2015, 38(3): 13-17. | |
26 | 王素素, 陈友汜, 欧阳琴, 等. 偶氮引发剂对PAN及其原丝结构和热稳定化行为的影响[J]. 合成纤维工业, 2017, 40(3): 11-16. |
Wang S S,Chen Y S,Ouyang Q, et al. Effect of azo initiators on structure and thermal stabilization behavior of PAN and its precursor [J]. China Synthetic Fiber Industry, 2017, 40(3): 11-16. | |
27 | 王素素, 陈友汜, 欧阳琴, 等. 脒端基对聚丙烯腈原丝氧碳化行为的影响[J]. 材料科学与工程学报, 2018, 36(4): 547-553. |
Wang S S,Chen Y S,Ouyang Q, et al. Effect of amidine end group on preoxidation and carbonation of polyacrylonitrile precursor. Journal of Materials Science and Engineering, 2018, 36(4): 547-553. | |
28 | Wittenberg N F G, Buback M, Stach M, et al. Chain transfer to 2-mercaptoethanol in methacrylic acid polymerization in aqueous solution[J]. Macromolecular Chemistry and Physics, 2012, 213(24): 2653-2658. |
29 | Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565. |
30 | Ko Y G, Choi U S, Kim T Y, et al. FT-IR and isotherm study on anion adsorption onto novel chelating fibers[J]. Macromolecular Rapid Communications, 2002, 23(9): 535-539. |
31 | Kirilova E, Bulanovs A, Puckins A, et al. Spectral and structural characterization of chromium (Ⅲ) complexes bearing 7-oxo-7H-benzo [de] anthracen-3-yl-amidines ligand[J]. Polyhedron, 2019, 157: 107-115. |
32 | 潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2007. |
Pan Z R. Polymer Chemistry [M]. Beijing: Chemical Industry Press, 2007. | |
33 | Moad G. A critical assessment of the kinetics and mechanism of initiation of radical polymerization with commercially available dialkyldiazene initiators[J]. Progress in Polymer Science, 2019, 88: 130-188. |
34 | 城内宏, 柚口貞夫, 渡辺正元. アクリロ二トリル重合体の重合条件と分子量分布との関係[J]. 工業化学雑誌, 1964, 67(7): 1063-1068. |
35 | 张旺玺. 聚丙烯腈基碳纤维[M]. 上海: 东华大学出版社, 2005. |
Zhang W X. Polyacrylonitrile-based carbon fiber[M]. Shanghai: Donghua University Press, 2005. |
[1] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[2] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[3] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[4] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[5] | 李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570. |
[6] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[7] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[8] | 刘佳宁, 马嘉浩, 张军营, 程珏. 顺序双重热固化的硫醇-丙烯酸酯-环氧树脂三维网络的构建及性能[J]. 化工学报, 2022, 73(9): 4173-4186. |
[9] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[10] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[11] | 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773. |
[12] | 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287. |
[13] | 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
[14] | 许超群, 俞娟, 范一民, 王基夫, 储富祥. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043. |
[15] | 郑哲楠, 高翔, 罗英武, 黄杰. 紫外光交联法制备全固态聚合物电解质[J]. 化工学报, 2022, 73(1): 441-450. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 442
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 915
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||