化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2279-2287.doi: 10.11949/0438-1157.20211680

• 材料化学工程与纳米技术 • 上一篇    

污泥焚烧炉渣基定型复合相变储热材料的制备和性能

宋超宇1(),熊亚选1(),张金花2,金宇贺1,药晨华1,王辉祥1,丁玉龙3   

  1. 1.北京建筑大学环境与能源工程学院供热供燃气通风及空调工程北京市重点实验室,北京 100044
    2.北京中建建筑科学研究院有限公司,北京 100076
    3.伯明翰大学伯明翰储能中心,伯明翰 B15 2TT,英国
  • 收稿日期:2021-11-26 修回日期:2022-03-08 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 熊亚选 E-mail:1807931498@qq.com;xiongyaxuan@bucea.edu.cn
  • 作者简介:宋超宇(1998—),女,硕士研究生,1807931498@qq.com
  • 基金资助:
    北京市教委科研项目(KM201910016011);北京建筑大学研究生创新项目(PG2021052)

Preparation and performance study of incinerated slag based shape-stable phase change composites

Chaoyu SONG1(),Yaxuan XIONG1(),Jinhua ZHANG2,Yuhe JIN1,Chenhua YAO1,Huixiang WANG1,Yulong DING3   

  1. 1.Beijing Key Laboratory of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    2.Beijing Building Research Institute Co. , Ltd. of CSCEC, Beijing 100076, China
    3.Birmingham Center for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK
  • Received:2021-11-26 Revised:2022-03-08 Published:2022-05-05 Online:2022-05-24
  • Contact: Yaxuan XIONG E-mail:1807931498@qq.com;xiongyaxuan@bucea.edu.cn

摘要:

市政污泥的大量堆积或填埋会破坏局部生态环境,而焚烧可实现污泥的无害化处理,但污泥炉渣中的重金属难以有效固定。为有效固定污泥炉渣中的重金属,资源化利用污泥焚烧炉渣制备低成本复合相变储热材料,提出市政污泥焚烧炉渣作为骨架材料,硝酸钠为相变储热材料,采用冷压-烧结法制备了5种不同质量比的污泥焚烧炉渣基定型复合相变储热材料,并对其传热储热性能、微观形貌、抗压性能以及化学相容性进行研究。结果表明,在100~400℃范围内,焚烧炉渣与硝酸钠质量比为5∶5(样品SS3)时定型复合相变储热材料具有最佳的传热储热性能和良好的高温热稳定性,可实现对重金属的有效固定;炉渣组分与硝酸钠间具有良好的化学相容性,样品SS3的储热密度高达409.25 J/g,热导率最高达0.955 W/(m·K),抗压强度为139.65 MPa。经历500次加热/冷却循环后,样品SS3仍然具有良好的传热储热性能,表明污泥焚烧炉渣适合作为制备定型复合相变储热材料的骨架材料。

关键词: 市政污泥, 骨架材料, 储热, 稳定性, 化学相容性, 相变, 制备

Abstract:

Massive accumulation and landfill of municipal sludge will damage the local ecological environment around the city. Incineration can realize the harmlessness of municipal sludge, however, the heavy metals inside the incinerated slag are difficult to be effectively fixed. In order to effectively fix the heavy metals inside the incinerated slag and recycle the slag to produce low-cost shape-stable phase change composites, this work proposed the sludge incinerated slag as skeleton material, and five slag-based shape-stable phase change composites were prepared with sodium nitrate as phase change material with different mass ratio of incinerated slag to sodium nitrate by cold-compression & hot-sintering method. Then, the thermal performance, micromorphology, mechanical performance and chemical compatibility between the slag components and the sodium nitrate were investigated. Results shows that the shape-stable phase change composite with the mass ratio 5∶5 of slag to sodium nitrate, namely the sample SS3 possesses the best heat transfer and thermal energy storage performance as well as excellent high-temperature thermal stability, which fixed the heavy metals inside properly. Moreover, a good chemical compatibility between the slag components and the sodium nitrate is observed and the sample SS3 achieves the thermal energy storage density of 409.25 J/g and the maximum thermal conductivity of 0.955 W/(m·K) in the range of 100—400℃ and the mechanical strength of 139.65 MPa. In addition, the sample SS3 possesses excellent heat transfer and thermal energy storage performance after 500 heating/cooling cycles, which indicates that sludge incinerated slag is suitable for preparing low-cost shape-stable phase change composites as skeleton materials.

Key words: municipal sludge, skeleton materials, thermal energy storage, stability, chemical compatibility, phase change, preparation

中图分类号: 

  • TK 02

表1

市政污泥焚烧炉渣的化学成分"

Al2O3SiO2P2O5CaOFe2O3MgOOthers
37%24.9%17.3%7.7%5.7%2.6%4.8%

图1

定型复合相变储热材料的制备工艺流程"

表2

定型复合相变储热材料的基本性能"

样品编号污泥炉渣/ %(质量)硝酸钠/ %(质量)定型复合相变储热 材料实物
SS00100
SS16040
SS25545
SS35050
SS44555
SS54060

图2

样品SS0、SS2、SS3和SS4的比热容随温度变化曲线"

图3

循环前后的样品SS3比热容"

表3

循环前后样品SS3的热性能和质量变化"

项目熔点(熔化 起始温度)/°C熔化终止 温度/°C潜热/(J/g)质量/mg
500次加热/冷却循环前303.7316.260.331000
500次加热/冷却循环后303.8318.155.61960

图4

循环前后的样品SS3储热密度"

图5

500次加热/冷却循环前、后样品SS3热扩散率和热导率"

图6

样品SS3经历500次加热/冷却循环前、后的微观形貌"

图7

循环前后样品SS3的元素分布"

图8

污泥焚烧炉渣与硝酸钠的化学相容性分析"

图9

样品SS2、SS3和SS4的抗压强度"

图10

循环前后样品SS3的抗压强度"

1 Li Q, Cong L, Zhang X S, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110511.
2 Zhu J Q, Li R G, Zhou W B, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(5): 950-954.
3 Yu Q H, Jiang Z, Cong L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377.
4 Zhong L M, Zhang X W, Luan Y, et al. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite[J]. Solar Energy, 2014, 107: 63-73.
5 Liu J W, Wang Q H, Ling Z Y, et al. A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion[J]. Solar Energy Materials and Solar Cells, 2017, 169: 280-286.
6 Lachheb M, Adili A, Albouchi F, et al. Thermal properties improvement of lithium nitrate/graphite composite phase change materials[J]. Applied Thermal Engineering, 2016, 102: 922-931.
7 Sang L X, Xu Y W. Form stable binary chlorides/expanded graphite composite material with enhanced compressive strength for high temperature thermal storage[J]. Journal of Energy Storage, 2020, 31: 101611.
8 Chen W C, Liang X H, Wang S F, et al. SiO2 hydrophilic modification of expanded graphite to fabricate form-stable ternary nitrate composite room temperature phase change material for thermal energy storage[J]. Chemical Engineering Journal, 2021, 413: 127549.
9 Li Y, Guo B, Huang G F, et al. Eutectic compound (KNO3/NaNO3: PCM) quasi-encapsulated into SiC-honeycomb for suppressing natural convection of melted PCM[J]. International Journal of Energy Research, 2015, 39(6): 789-804.
10 Li Y, Guo B, Huang G F, et al. Characterization and thermal performance of nitrate mixture/SiC ceramic honeycomb composite phase change materials for thermal energy storage[J]. Applied Thermal Engineering, 2015, 81: 193-197.
11 Leng G H, Qiao G, Jiang Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220.
12 Qin Y, Leng G H, Yu X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282: 37-42.
13 Qin Y, Yu X, Leng G H, et al. Effect of diatomite content on diatomite matrix based composite phase change thermal storage material[J]. Materials Research Innovations, 2014, 18(sup2): S2-453.
14 Liu S Y, Yang H M. Cover picture: composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material[J]. Energy Technology, 2015, 3(1): 1.
15 Zhang T Y, Wang T Y, Wang K C, et al. Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage[J]. Solar Energy, 2021, 227: 468-476.
16 Li B R, Tan H, Liu Y, et al. Experimental investigations on the thermal stability of Na2CO3-K2CO3 eutectic salt/ceramic composites for high temperature energy storage[J]. Renewable Energy, 2020, 146: 2556-2565.
17 Jiang Z, Jiang F, Li C, et al. A form stable composite phase change material for thermal energy storage applications over 700℃[J]. Applied Sciences, 2019, 9(5): 814.
18 Li C, Li Q, Ding Y L. Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: from component to device level performance through modelling[J]. Renewable Energy, 2019, 140: 140-151.
19 Sang L X, Li F, Xu Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180: 1-7.
20 Deng Y, Li J H, Nian H. Expanded vermiculite: a promising natural encapsulation material of LiNO3, NaNO3, and KNO3 phase change materials for medium-temperature thermal energy storage[J]. Advanced Engineering Materials, 2018, 20(8): 1800135.
21 Xu G Z, Leng G H, Yang C Y, et al. Sodium nitrate - diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502.
22 Li R G, Zhu J Q, Zhou W B, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103: 452-458.
23 Deng Y, Li J H, Qian T T, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. Journal of Materials Science & Technology, 2017, 33(2): 198-203.
24 王铁营, 王凯晨, 张天影, 等. 粉煤灰高温定型相变储热材料制备及性能表征[J]. 中国科学: 技术科学, 2020, 50(9): 1235-1242.
Wang T Y, Wang K C, Zhang T Y, et al. High-temperature shape-stable phase-change material based on coal fly ash[J]. Scientia Sinica (Technologica), 2020, 50(9): 1235-1242.
25 Wang T Y, Zhang T Y, Xu G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3 [J]. Solar Energy Materials and Solar Cells, 2020, 206: 110328.
26 关江哲, 朱桂花, 吕硕, 等. 氧化钙对金属/粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 硅酸盐通报, 2020, 39(9): 3008-3013, 3022.
Guan J Z, Zhu G H, Lyu S, et al. Effect of calcium oxide on thermal storage performance of metal/fly ash-based high temperature form-stable composite phase change material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 3008-3013, 3022.
27 Qiu F, Song S K, Li D N, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246: 118952.
28 Wang T Y, Wang K C, Ye F, et al. Characterization and thermal properties of a shape-stable Na2CO3-K2CO3/coal fly ash/expanded graphite composite phase change materials for high-temperature thermal energy storage[J]. Journal of Energy Storage, 2021, 33: 102123.
29 王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340.
Wang Y, Huang Y, Yao H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340.
30 Xiong Y X, Sun M Y, Wu Y T, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619.
31 White L R, Davis H T. Thermal conductivity of molten alkali nitrates[J]. The Journal of Chemical Physics, 1967, 47: 5433-5439.
[1] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[2] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[3] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[4] 董彬, 薛永浩, 梁坤峰, 袁争印, 王林, 周训. 相变微胶囊悬浮液喷淋换热特性实验研究[J]. 化工学报, 2022, 73(7): 2971-2981.
[5] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[6] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[7] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
[8] 任玉鑫, 徐润峰, 王婉颖, 陈鹏忠, 彭孝军. 彩色光刻胶用蒽醌染料的合成及稳定性研究[J]. 化工学报, 2022, 73(5): 2251-2261.
[9] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
[10] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[11] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[12] 张宇伦, 陈长坤, 雷鹏. 不同可燃液体层高度下浸润多孔介质砂床组合燃烧特性实验研究[J]. 化工学报, 2022, 73(4): 1826-1833.
[13] 门文欣, 彭庆收, 桂霞. 不同季铵盐作用下的CO2水合物相平衡[J]. 化工学报, 2022, 73(4): 1472-1482.
[14] 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135.
[15] 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!