化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3421-3432.DOI: 10.11949/0438-1157.20210610
• 信息与交流 • 上一篇
收稿日期:
2021-04-30
修回日期:
2021-05-24
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
张磊
作者简介:
张杰(1965—),女,硕士,副教授,基金资助:
ZHANG Jie1(),ZHANG Yuanjing1,ZHANG Huiqing1,ZHANG Lei2()
Received:
2021-04-30
Revised:
2021-05-24
Online:
2021-06-05
Published:
2021-06-05
Contact:
ZHANG Lei
摘要:
基于基本科学指标数据库(ESI)的高被引论文,通过热点文献、CiteSpace分析工具得到的热点关键词对应的文献分析,得出有机光电高分子材料主要关注点为有机太阳能电池。有机太阳能电池的研究热点为:高性能活性层材料的设计合成;高性能界面材料的设计合成及其界面调控性能的研究;电池器件中有机半导体活性层表界面的可控掺杂;有机太阳能电池活性层能量损失研究。通过高被引论文的共被引分析,关键词突变探测技术和算法对词频的变动趋势分析,得出有机光电高分子领域最新关注前沿:高效太阳能电池的制备;非富勒稀受体的研究;有机半导体材料的设计合成;结构-性能研究;加工及应用性能。有机光电高分子材料研究活跃的前沿领域:高效全聚合物太阳能电池;三元有机太阳能电池;高效的倒置型太阳能电池;超高迁移率的透明有机薄膜晶体管;高迁移率场效应晶体管;二维共轭聚合物;聚合物半导体等。有机太阳能电池研究前沿主题演化趋势:从聚噻吩给体体系——新型给体-受体体系;单层——双层——本体异质结电池结构;富勒烯受 体——非富勒烯受体;高效及稳定性器件发展。本文创新性地将文献计量分析方法同文献具体内容分析相结合,通过大量的高质量文献内容分析,使得出的研究热点和前沿更具体和接近实际情况,为相关科研人员提供有益参考。
中图分类号:
张杰, 张元晶, 张慧卿, 张磊. 有机光电高分子材料研究热点和前沿分析[J]. 化工学报, 2021, 72(6): 3421-3432.
ZHANG Jie, ZHANG Yuanjing, ZHANG Huiqing, ZHANG Lei. Research hotspot and frontier of organic optoelectronic polymer materials[J]. CIESC Journal, 2021, 72(6): 3421-3432.
序号 | 共现频次 | 中心度 | 关键词 |
---|---|---|---|
1 | 240 | 0.17 | performance |
2 | 226 | 0.23 | open circuit voltage |
3 | 209 | 0.21 | polymer |
4 | 202 | 0.13 | conjugated polymer |
5 | 184 | 0.18 | morphology |
6 | 175 | 0.22 | power conversion efficiency |
7 | 140 | 0.28 | design |
8 | 135 | 0.11 | polymer solar cell |
9 | 148 | 0.03 | field effect transistor |
10 | 140 | 0.03 | solar cell |
11 | 134 | 0.06 | efficiency |
12 | 128 | 0.12 | high performance |
13 | 118 | 0.05 | electron acceptor |
14 | 110 | 0.1 | thin film transistor |
15 | 107 | 0.17 | donor |
16 | 79 | 0.11 | charge transport |
17 | 83 | 0.1 | copolymer |
18 | 75 | 0.13 | light emitting diode |
表1 有机光电高分子材料高被引论文热点关键词
Table 1 Hot keywords from highly cited papers in organic photoelectric polymer materials
序号 | 共现频次 | 中心度 | 关键词 |
---|---|---|---|
1 | 240 | 0.17 | performance |
2 | 226 | 0.23 | open circuit voltage |
3 | 209 | 0.21 | polymer |
4 | 202 | 0.13 | conjugated polymer |
5 | 184 | 0.18 | morphology |
6 | 175 | 0.22 | power conversion efficiency |
7 | 140 | 0.28 | design |
8 | 135 | 0.11 | polymer solar cell |
9 | 148 | 0.03 | field effect transistor |
10 | 140 | 0.03 | solar cell |
11 | 134 | 0.06 | efficiency |
12 | 128 | 0.12 | high performance |
13 | 118 | 0.05 | electron acceptor |
14 | 110 | 0.1 | thin film transistor |
15 | 107 | 0.17 | donor |
16 | 79 | 0.11 | charge transport |
17 | 83 | 0.1 | copolymer |
18 | 75 | 0.13 | light emitting diode |
1 | 张和康,潘道成. 论具有光、电特性的有机、高分子功能材料[J]. 功能高分子学报, 1992, 5(2): 111-116. |
Zhang H K, Pan D C. Organic and polymer functional materials with optical and electrical properties[J]. Functional Polymer, 1992, 5(2): 111-116. | |
2 | Lu L Y, Zheng T Y, Wu Q H, et al. Recent advances in bulk heterojunction polymer solar Cells[J]. Chem. Rev., 2015, 115(23): 12666-12731. |
3 | Yao H F, Ye L, Zhang H, et al. Molecular design of benzodithiophene-based organic photovoltaic materials[J]. Chem. Rev., 2016, 116(12): 7397-7457. |
4 | 李小涛, 秦萍, 钱玲飞. 图情领域基本科学指标数据库高被引论文的知识图谱分析[J]. 情报理论与实践,2017, 40(2): 111-116. |
Li X T, Qin P, Qian L F. An analysis of knowledge mapping of high cited papers on library and information science in ESI [J]. Information Studies:Theory & Application, 2017, 40(2): 111-116. | |
5 | Sun H L, Liu T, Yu J W, et al. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency[J]. Energ. Environ. Sci., 2019, 12(11): 3328-3337. |
6 | Li K, Wu Y S, Tang Y B, et al. Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-lumo-level acceptor to improve film morphology[J]. Adv. Energ. Mater., 2019, 9(33): 1901728. |
7 | Liu T, Luo Z H, Chen Y Z, et al. A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%[J]. Energ. Environ. Sci., 2019, 12(8): 2529-2536. |
8 | Yu R N, Yao H F, Cui Y, et al. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells[J]. Adv. Mater., 2019, 31(36): 1902302. |
9 | Cui Y, Yao H F, Zhang J Q, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J]. Nat. Commun., 2019, 10(1): 2515. |
10 | Liu T, Gao W, Wang Y L, et al. Unconjugated side-chain engineering enables small molecular acceptors for highly efficient non-fullerene organic solar cells: insights into the fine-tuning of acceptor properties and micromorphology[J]. Adv. Funct. Mater., 2019, 29(26): 1902155. |
11 | Fan B B, Zhang D F, Li M J, et al. Achieving over 16% efficiency for single-junction organic solar cell[J]. Sci. China-Chem., 2019, 62(6): 746-752. |
12 | Yao H F, Cui Y, Qian D P, et al. 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference[J]. J. Am. Chem. Soc., 2019, 141(19): 7743-7750. |
13 | Yuan J, Zhang Y Q, Zhou L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3(4): 1140-1151. |
14 | Cui Y, Yao H F, Hong L, et al. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design[J]. Adv. Mater., 2019, 31(14): 1808356. |
15 | Fu H T, Wang Z H, Sun M. Polymer donors for high-performance non-fullerene organic solar cells[J]. Angew. Chem.-Int. Ed., 2019, 58(14): 4442-4453. |
16 | Wadsworth A, Moser M, Marks A, et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells[J]. Chem. Soc. Rev., 2019, 48(6): 1596-1625. |
17 | Li S X, Zhan L L, Sun C K, et al. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets[J]. J. Am. Chem. Soc., 2019, 141(7): 3073-3082. |
18 | Yuan J, Huang T Y, Cheng P, et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics[J]. Nat. Commun., 2019, 10: 570. |
19 | Yao H T, Bai F J, Hu H W, et al. Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency[J]. ACS Energ. Lett., 2019, 4(2): 417-422. |
20 | Liu T, Luo Z H, Fan Q P, et al. Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors[J]. Energ. Environ. Sci., 2018, 11(11): 3275-3282. |
21 | Zhou Z C, Xu S J, Song J N, et al. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors[J]. Nat. Energ., 2018, 3(11): 952-959. |
22 | Kan B, Feng H R, Yao H F, et al. A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss[J]. Sci. China-Chem., 2018, 61(10): 1307-1313. |
23 | Zhang J Q, Tan H S, Guo X G, et al. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors[J]. Nat. Energ., 2018, 3(9): 720-731. |
24 | Zhang H, Yao H F, Hou J X, et al. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors[J]. Adv. Mater., 2018, 30(28): 1800613. |
25 | Li S S, Ye L, Zhao W C, et al. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells[J]. J. Am. Chem. Soc., 2018, 140(23): 7159-7167. |
26 | Zhang S Q, Qin Y P, Zhu J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor[J]. Adv. Mater., 2018, 30(20): 1800868. |
27 | Zhang G Y, Zhao J B, Chow Philip C Y, et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells[J]. Chem. Rev., 2018, 118(7): 3447-3507. |
28 | Cheng P, Li G, Zhan X W, et al. Next-generation organic photovoltaics based on non-fullerene acceptors[J]. Nat. Photonics, 2018, 12(3): 131-142. |
29 | Yan C Q, Barlow S, Wang Z H, et al. Non-fullerene acceptors for organic solar cells[J]. Nat. Rev. Mater., 2018, 3(3): 18003. |
30 | Yao Z Y, Liao X F, Gao K, et al. Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss[J]. J. Am. Chem. Soc., 2018, 140(6): 2054-2057. |
31 | Hou J H, Inganäs O, Friend R H, et al. Organic solar cells based on non-fullerene acceptors[J]. Nat. Mater., 2018, 17(2): 119-128. |
32 | Xu X P, Feng K, Bi Z Z, et al. Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(Ⅱ) complexation strategy[J]. Adv. Mater., 2019, 31(29): 1901872. |
33 | Wang J Y, Zhang J X, Xiao Y Q, et al. Effect of isomerization on high-performance nonfullerene electron acceptors[J]. J. Am. Chem. Soc., 2018, 140(29): 9140-9147. |
34 | Qian D P, Zheng Z L, Yao H F, et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells[J]. Nat. Mater., 2018, 17(8): 703-709. |
35 | Meng L X, Zhang Y M, Wan X J, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098. |
36 | Lee C, Lee S, Kim G U, et al. Recent advances, design guidelines, and prospects of all-polymer solar cells[J]. Chem. Rev., 2019, 119(13): 8028-8086. |
37 | Meng Y, Wu J N, Guo X, et al. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage[J]. Sci. China-Chem., 2019, 62(7): 845-850. |
38 | Zhao B D, Bai S, Kim V, et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes[J]. Nat. Photonics, 2018, 12(12): 783-789. |
39 | Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413): 449-453. |
40 | Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J]. Nature, 2018, 555(7694): 83-88. |
41 | Rivnay J, Inal S, Salleo A, et al. Organic electrochemical transistors[J]. Nat. Rev. Mater., 2018, 3(2): 17086. |
42 | Wang C L, Dong H L, Jiang L, et al. Organic semiconductor crystals[J]. Chem. Soc. Rev., 2018, 47(2): 422-500. |
43 | Zhao W C, Li S S, Yao H F, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J]. J. Am. Chem. Soc., 2017, 139(21): 7148-7151. |
44 | Zhao W C, Qian D P, Zhang S Q, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J]. Adv. Mater., 2016, 28(23): 4734-4739. |
45 | Lin Y Z, Zhao F W, He Q, et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics[J]. J. Am. Chem. Soc., 2016, 138(14): 4955-4961. |
46 | Holliday S, Ashraf R S, Wadsworth A, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor[J]. Nat. Commun., 2016, 7: 11585 |
47 | Yang Y K, Zhang Z G, Bin H J, et al. Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells[J]. J. Am. Chem. Soc., 2016, 138(45): 15011-15018. |
48 | Baran D, Ashraf R S, Hanifi D A, et al. Reducing the effciency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells[J]. Nat. Mater., 2017, 16(3): 363-369. |
49 | Dai S X, Zhao F W, Zhang Q Q, et al. Fused nonacyclic electron acceptors for efficient polymer solar cells[J]. J. Am. Chem. Soc., 2017, 139(3): 1336-1343. |
50 | Zhao F W, Dai S X, Wu Y, et al. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency[J]. Adv. Mater., 2017, 29(18): 1700144. |
51 | Meng D, Sun D, Zhong C M, et al. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor[J]. J. Am. Chem. Soc., 2016, 138(1): 375-380. |
52 | Yao H F, Cui Y, Yu R N, et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap[J]. Angew. Chem.-Int. Ed., 2017, 56(11): 3045-3049. |
53 | Kan B, Feng H R, Wan X J, et al. Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells[J]. J. Am. Chem. Soc., 2017, 139(13): 4929-4934. |
54 | Yao H F, Chen Y, Qin Y P, et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells[J]. Adv. Mater., 2016, 28(37): 8283-8287. |
55 | Sun J, Ma X L, Zhang Z H, et al. Dithieno[3,2-b:2',3'-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells[J]. Adv. Mater., 2018, 30(16): 1707150. |
56 | Dai S X, Li T F, Wang W, et al. Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors[J]. Adv. Mater., 2018, 30(15): 1706571. |
57 | Hartnett P E, HSSR Matte, Eastham N D, et al. Ring-fusion as a perylenediimide dimer design concept for high-performance non-fullerene organic photovoltaic acceptors[J]. Chem. Science, 2016, 7(6): 3543-3555. |
58 | Liu W R, Zhang J Y, Zhou Z C, et al. Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaic [J]. Adv. Mater., 2018, 30(26): 1800403. |
59 | Hu Z H, Wang J, Wang Z, et al. Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance[J]. Nano Energy, 2019, 55: 424-432. |
60 | Bin H J, Gao L, Zhang Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor[J]. Nat. Commun., 2016, 7: 13651. |
61 | Bin H J, Zhang Z G, Gao L, et al. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency[J]. J. Am. Chem. Soc., 2016, 138(13): 4657-4664. |
62 | Xu X P, Yu T, Bi Z Z, et al. Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers[J]. Adv. Mater., 2018, 30(3): 1703973. |
63 | Chen S S, Liu Y H, Zhang L, et al. A wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss[J]. J. Am. Chem. Soc., 2017, 139(18): 6298-6301. |
64 | Sun C K, Pan F, Bin H J, et al. A low cost and high performance polymer donor material for polymer solar cells[J]. Nat. Commun., 2018, 9: 743. |
65 | Liu T, Pan X X, Meng X Y, et al. Alkyl side-chain engineering in wide-bandgap copolymers leading to power conversion efficiencies over 10%[J]. Adv. Mater., 2017, 29(6): 1604251. |
66 | Li T F, Dai S X, Ke Z F, et al. Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells[J]. Adv. Mater., 2018, 30(10): 1705969. |
67 | Dou K K, Wang X C, Du Z R, et al. Synergistic effect of side-chain and backbone engineering in thieno[2,3-f]benzofuran-based conjugated polymers for high performance non-fullerene organic solar cells[J]. J. Mater. Chem. A, 2019, 7(3): 958-964. |
68 | Fan Q P, Su W Y, Wang Y, et al. Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency[J]. Sci. China-Chem., 2018, 61(5): 531-537. |
69 | Zhao W C, Li S S, Zhang S Q, et al. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency[J]. Adv. Mater., 2017, 29(2): 1604059. |
70 | Zhang M, Gao W, Zhang F J, et al. Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%[J]. Energ. Environ. Sci., 2018, 11(4): 841-849. |
71 | An Q S, Wang J, Zhang F J. Ternary polymer solar cells with alloyed donor achieving 14.13% efficiency and 78.4% fill factor[J]. Nano Energy, 2019, 60: 768-774. |
72 | Gao L, Zhang Z G, Xue L W, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%[J]. Adv. Mater., 2016, 28(9): 1884-1890. |
73 | Li S S, Ye L, Zhao W C, et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells[J]. Adv. Mater., 2016, 28(42): 9423-9429. |
74 | Li Z J, Xu X F, Zhang W, et al. High performance all-polymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing[J]. J. Am. Chem. Soc., 2016, 138(34):10935-10944. |
75 | Luo Z H, Bin H J, Liu T, et al. Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54%[J]. Advanced Materials, 2018, 30(9): 1706124. |
76 | Song X, Gasparini N, Nahid M M, et al. Dual sensitizer and processing-aid behavior of donor enables efficient ternary organic solar cells[J]. Joule, 2019, 3(3): 846-857. |
77 | Ye L, Hu H W, Ghasemi M, et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells[J]. Nat. Mater., 2018, 17(3): 253-260. |
78 | Liu T, Huo L J, Chandrabose S, et al. Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells[J]. Adv. Mater., 2018, 30(26): 1707353. |
79 | Mai J Q, Xiao Y Q, Zhou G D, et al. Hidden structure ordering along backbone of fused-ring electron acceptors enhanced by ternary bulk heterojunction[J]. Adv. Mater., 2018, 30(34): 1802888. |
80 | Aldrich T J, Matta M, Zhu W G, et al. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response[J]. J. Am. Chem. Soc., 2019, 141(7): 3274-3287. |
81 | Liu Y H, Zhang Z, Feng S Y, et al. Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells[J]. J. Am. Chem. Soc., 2017, 139(9): 3356-3359. |
82 | Vohra V, Kawashima K, Kakara T, et al. Efficient inverted polymer solar cells employing favourable molecular orientation[J]. Nat. Photonics, 2015, 9(6): 403-408. |
83 | Zheng Z, Hu Q, Zhang S Q, et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer[J]. Adv. Mater., 2018, 30(34): 1801801. |
84 | Back J Y, Yu H, Song I, et al. Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering[J]. Chem. Mater., 2015, 27(5): 1732-1739. |
85 | Kawashima K, Fukuhara T, Suda Y, et al. Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole based semiconducting polymers[J]. J. Am. Chem. Soc., 2016, 138(32): 10265-10275. |
86 | Rivnay J, Inal S, Collins B A, et al. Structural control of mixed ionic and electronic transport in conducting polymers[J]. Nat. Commun., 2016, 7: 11287. |
87 | Kang S D, Snyder G J. Charge-transport model for conducting polymers[J]. Nat. Mater., 2017, 16(2): 252-257. |
88 | Liu Y, Sheri M, Cole M D, et al. Combining fullerenes and zwitterions in non-conjugated polymer interlayers to raise solar cell efficiency[J]. Angew. Chem. Int. Ed, 2018, 57(31): 9675-9678. |
89 | Liu J, Chen S S, Qian D P, et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force[J]. Nat. Energy, 2016, 1: 16089. |
90 | Cheng P, Zhang M Y, Lau T K, et al. Realizing small energy loss of 0.55 eV, high open-circuit voltage > 1 V and high efficiency > 10% in fullerene-free polymer solar cells via energy driver[J]. Adv. Mater., 2017, 29(11): 1605216. |
91 | Li W N, Ye L, Li S S, et al. A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor[J]. Adv. Mater., 2018, 30(16): 1707170. |
92 | Fei Z P, Eisner F D, Jiao X C, et al. An alkylated indacenodithieno [3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses[J]. Adv. Mater., 2018, 30(8): 1705209. |
93 | Li M M, Gao K, Wan X J, et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12%[J]. Nat. Photonics, 2017, 11(2): 85-90. |
94 | Cui Y, Yao H F, Gao B W, et al. Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell[J]. J. Am. Chem. Soc., 2017, 139(21): 7302-7309. |
95 | Cui Y, Yao H F, Yang C Y, et al. Organic solar cells with an efficiency approaching 15%[J]. Acta Polymerica Sinica, 2018, (2),SI: 223-230. |
96 | Liu G C, Jia J C, Zhang K, et al. 15% efficiency tandem organic solar cell based on a novel highly efficient wide-bandgap nonfullerene acceptor with low energy loss[J]. Adv. Energy Mater., 2019, 9(11): 1803657. |
97 | Zhang F, Kim D H, Lu H P, et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation[J]. J. Am. Chem. Soc., 2019, 141(14): 5972-5979. |
98 | Jiang J X, Wang Q, Jin Z W, et al. Polymer doping for high-efficiency perovskite solar cells with improved moisture stability[J]. Adv. Energy Mater., 2018, 8(3): 1701757. |
99 | Bi D Q, Yi C Y, Luo J S, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nat. Energy, 2016, 1: 16142. |
100 | Chen A Z, Shiu M, Ma J H, et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance[J]. Nat. Commun., 2018, 9(1): 1336. |
101 | Zhao Y C, Wei J, Li H, et al. A polymer scaffold for self-healing perovskite solar cells[J]. Nat. Commun., 2016, 7: 10228. |
102 | Zeng Q S, Zhang X Y, Feng X L, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V[J]. Adv. Mater., 2018, 30(9): 1705393. |
103 | Kim Y C, Kim K H, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91. |
104 | Jiang C, Choi H W, Cheng X, et al. Printed subthreshold organic transistors operating at high gain and ultralow power [J]. Science, 2019, 363(6428): 719-723. |
105 | Bittle E G, Basham J I, Jackson T N, et al. Mobility overestimation due to gated contacts in organic field-effect transistors[J]. Nat. Commun., 2016, 7: 10908. |
106 | Wang Y, Hasegawa T, Matsumoto H, et al. Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding[J]. J. Am. Chem. Soc., 2019, 141(8): 3566-3575. |
107 | Kang B, Kim R, Lee S B, et al. Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains[J]. J. Am. Chem. Soc., 2016, 138(11): 3679-3686. |
108 | Yang J, Wang H L, Chen J Y, et al. Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors[J]. Adv. Mater., 2017, 29(22): 1606162. |
109 | Shi Y Q, Guo H, Qin M C, et al. Thiazole imide-based all-acceptor homopolymer: achieving high-performance unipolar electron transport in organic thin-film transistors[J]. Adv. Mater., 2018, 30(10): 1705745. |
110 | Zhao Y, Zhao X K, Roders M, et al. Melt-processing of complementary semiconducting polymer blends for high performance organic transistors[J]. Adv. Mater., 2017, 29(6): 1605056. |
111 | Wang Y F, Guo H, Harbuzaru A, et al. (Semi)ladder-type bithiophene imide-based all-acceptor semiconductors: synthesis, structure-property correlations, and unipolar n-type transistor performance[J]. J. Am. Chem. Soc., 2018, 140(19): 6095-6108. |
112 | Li Z Y, Ying L, Zhu P, et al. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%[J]. Energ. Environ. Sci., 2019, 12(1): 157-163. |
113 | Ricciardulli A G, Yang S, Wetzelaer G J A H, et al. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics[J]. Adv. Funct. Mater., 2018, 28(14): 1706010. |
114 | Tian Y, Zhou C K, Worku M, et al. Highly efficient spectrally stable red perovskite light-emitting diodes[J]. Adv. Mater., 2018, 30(20): 1707093. |
115 | Meng D, Fu H T, Xiao C Y, et al. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics[J]. J. Am. Chem. Soc., 2016, 138(32): 10184-10190. |
116 | Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin[J]. Science Advances, 2016, 2(4): e1501856. |
117 | Li G R, Rivarola F W R, Davis N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method[J]. Adv. Mater., 2016, 28(18): 3528-3534. |
118 | Li G R, Tan Z K, Di D W, et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix[J]. Nano Lett., 2015, 15(4): 2640-2644. |
119 | Hwang K, Jung Y S, Heo Y J, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells[J]. Adv. Mater., 2015, 27(7): 1241-1247. |
[1] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[2] | 齐书平, 王文龙, 张磊, 都健. 基于深度学习的金属离子-有机配体配位稳定常数的预测[J]. 化工学报, 2022, 73(12): 5461-5468. |
[3] | 钱庆玲, 朱晴, 杨正金, 徐铜文. 微孔Noria聚合物用于二甲苯异构体吸附分离研究[J]. 化工学报, 2022, 73(12): 5438-5448. |
[4] | 徐飞翔, 蒋丽群, 郑安庆, 赵增立. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172. |
[5] | 李锦锦, 吴优, 周寅宁, 罗正鸿. 两亲嵌段共聚物基高内相乳液模板的制备与应用研究进展[J]. 化工学报, 2021, 72(11): 5443-5454. |
[6] | 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493. |
[7] | 程文静, 余林, 程高, 钟远红, 郑成, 毛桃嫣. 多羟基Bola有机硅季铵盐的合成、表征及其应用性能[J]. 化工学报, 2021, 72(5): 2837-2848. |
[8] | 高宏娟,任伟民. 内酯和环氧烷烃共聚合成聚酯-聚醚共聚物的研究进展[J]. 化工学报, 2021, 72(1): 440-451. |
[9] | 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878. |
[10] | 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396. |
[11] | 于守武, 肖淑娟, 赵泽文, 霍晓文, 魏俊富. 蜜胺-环氧树脂双层包覆聚磷酸铵及其阻燃PP的研究[J]. 化工学报, 2019, 70(6): 2370-2376. |
[12] | 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||