化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 482-493.doi: 10.11949/0438-1157.20201771

• 能源和环境工程 • 上一篇    下一篇

镍基非对称中空纤维膜用于乙醇自热重整制氢

陈晨(),王明明,王志刚(),谭小耀()   

  1. 天津工业大学化学与化工学院,天津 300387
  • 收稿日期:2020-12-09 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 王志刚,谭小耀 E-mail:LuckyChency@163.com;wangzhigang@tiangong.edu.cn;tanxiaoyao@tiangong.edu.cn
  • 作者简介:陈晨(1995—),女,硕士研究生,LuckyChency@163.com
  • 基金资助:
    国家自然科学基金项目(91745116);天津市自然科学基金项目(17JCZDJC36900)

Hydrogen production by ethanol autothermal reforming using nickel-based asymmetric hollow fiber membranes

CHEN Chen(),WANG Mingming,WANG Zhigang(),TAN Xiaoyao()   

  1. Department of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2020-12-09 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: WANG Zhigang,TAN Xiaoyao E-mail:LuckyChency@163.com;wangzhigang@tiangong.edu.cn;tanxiaoyao@tiangong.edu.cn

摘要:

采用纺丝-烧结技术制备了具有内表面致密皮层的外支撑式金属镍非对称中空纤维膜,并用于乙醇自热重整(EATR)制氢,研究了温度、进料流速、吹扫气流速、水醇比(S/C)以及氧醇比(O2/C)等操作条件对膜制氢性能的影响。结果表明,金属镍非对称中空纤维膜既具有优异的EATR催化活性,又有良好的透氢性能。在500~1000℃、S/C=4、O2/C=0.8的条件下乙醇可完全转化,H2产率和H2渗透通量可分别达到81.59%和13.99 mmol/(m2·s),增加进料中氧气含量可显著抑制膜表面积炭,但同时也会降低氢气产率和一氧化碳选择性。

关键词: 乙醇自热重整, 制氢, 膜, 中空纤维, 催化

Abstract:

Metallic nickel asymmetric hollow fiber membranes with an inner dense skin on the outer porous layer were fabricated by spinning-phase inversion technique. The membrane was used to produce hydrogen via autothermal reforming of ethanol. The operating conditions including temperature, feeding flow rate, sweeping rate, steam-to-carbon molar ratio (S/C) and oxygen-to-carbon ratio (O2/C) were investigated and optimized. The results have shown that the asymmetric nickel hollow fibers have excellent catalytic activity to EATR and high hydrogen permeation performance as well. Operated at 500—1000℃ with a steam-to-carbon ratio of 4 and an oxygen-to-carbon molar ratio of 0.8, the ethanol was completely consumed with 81.59% hydrogen yield, and the hydrogen permeation rate reached up to 13.99 mmol/(m2·s). With the increase of oxygen concentration in feed, the carbon deposition on the membrane surface was remarkably inhibited, while the hydrogen yield and CO selectivity were decreased.

Key words: ethanol autothermal reforming, hydrogen production, membrane, hollow fiber, catalysis

中图分类号: 

  • TQ 317.4

图1

金属镍中空纤维膜乙醇自热重整试验装置"

图2

镍中空纤维膜的形貌(1—截面;2—膜壁;3—外表面;4—内表面)"

图3

不同进料浓度下镍中空纤维膜的H2渗透通量与温度的关系(H2-He进料速率= 30 ml/min;N2吹扫速率= 60 ml/min)"

图4

镍中空纤维膜反应器和空白反应器中乙醇自热重整反应乙醇转化率、H2产率,MR产物浓度和Blank产物浓度随温度的变化(反应条件:S/C=4,O2/C=0.8,无吹扫气,进料流速为13 μl/min)"

图5

不同吹扫气流速对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=4,O2/C=0.8,吹扫气流速分别为0、30、50、70 ml/min,进料流速为13 μl/min)"

图6

不同蒸汽/乙醇比对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=3、4、5、6,O2/C=0.8,吹扫气流速为30 ml/min,进料流速为13 μl/min)"

图7

不同氧气/乙醇比对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=4,O2/C=0、0.5、0.8、1,吹扫气流速为30 ml/min,进料流速为13 μl/min)"

图8

不同进料流速对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=4,O2/C=0.8,吹扫气流速为30 ml/min,进料流速分别为13、19、26、39 μl/min)"

图9

ESR、EATR氢气渗透测试前后镍中空纤维膜的XRD谱图"

图10

ESR、EATR氢气渗透测试后镍中空纤维膜的形貌(a)、(b),ESR、EATR氢气渗透测试前后镍中空纤维的EDS映射(c)和元素分析(d)"

1 Ni M, Leung D Y C, Leung M K H. A review on reforming bio-ethanol for hydrogen production [J]. International Journal of Hydrogen Energy, 2007, 32(15): 3238-3247.
2 Lin H Q, He Z J, Sun Z, et al. CO2-selective membranes for hydrogen production and CO2 capture (I): Membrane development [J]. Journal of Membrane Science, 2014, 457: 149-161.
3 Mazloomi K, Gomes C. Hydrogen as an energy carrier: prospects and challenges [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3024-3033.
4 Spallina V, Matturro G, Ruocco C, et al. Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modelling and design [J]. Energy, 2018, 143: 666-681.
5 Conte M, Iacobazzi A, Ronchetti M, et al. Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives [J]. Journal of Power Sources, 2001, 100(1/2): 171-187.
6 Lin W H, Liu Y C, Chang H F. Hydrogen production from oxidative steam reforming of ethanol in a palladium-silver alloy composite membrane reactor [J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(5): 435-440.
7 Lin W H, Liu Y C, Chang H F. Autothermal reforming of ethanol in a Pd-Ag/Ni composite membrane reactor [J]. International Journal of Hydrogen Energy, 2010, 35(23): 12961-12969.
8 Weng S F, Wang Y H, Lee C S. Autothermal steam reforming of ethanol over La2Ce2-xRuxO7 (x = 0~0.35) catalyst for hydrogen production [J]. Applied Catalysis B: Environmental, 2013, 134/135: 359-366.
9 Iulianelli A, Palma V, Bagnato G, et al. From bioethanol exploitation to high grade hydrogen generation: steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor [J]. Renewable Energy, 2018, 119: 834-843.
10 Graschinsky C, Giunta P, Amadeo N, et al. Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol [J]. International Journal of Hydrogen Energy, 2012, 37(13): 10118-10124.
11 Guil-López R, Navarro R M, Peña M A, et al. Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts [J]. International Journal of Hydrogen Energy, 2011, 36(2): 1512-1523.
12 Espinal R, Anzola A, Adrover E, et al. Durable ethanol steam reforming in a catalytic membrane reactor at moderate temperature over cobalt hydrotalcite [J]. International Journal of Hydrogen Energy, 2014, 39(21): 10902-10910.
13 Cheng Y S, Peña M A, Fierro J L, et al. Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from Towngas mixture [J]. Journal of Membrane Science, 2002, 204(1/2): 329-340.
14 Paiman S H, Rahman M A, Othman M H D, et al. Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique [J]. Ceramics International, 2015, 41(10): 12543-12553.
15 Tan X Y, Liu Y T, Li K. Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion/sintering technique [J]. Industrial & Engineering Chemistry Research, 2005, 44(1): 61-66.
16 Lytkina A A, Orekhova N V, Ermilova M M, et al. Ru Rh based catalysts for hydrogen production via methanol steam reforming in conventional and membrane reactors [J]. International Journal of Hydrogen Energy, 2019, 44(26): 13310-13322.
17 Haag S, Burgard M, Ernst B. Pure nickel coating on a mesoporous alumina membrane: preparation by electroless plating and characterization [J]. Surface and Coatings Technology, 2006, 201(6): 2166-2173.
18 Zhang K, Gade S K, Way J D. Effects of heat treatment in air on hydrogen sorption over Pd-Ag and Pd-Au membrane surfaces [J]. Journal of Membrane Science, 2012, 403/404: 78-83.
19 Maneerung T, Hidajat K, Kawi S. Ultra-thin (<1 μm) internally-coated Pd-Ag alloy hollow fiber membrane with superior thermal stability and durability for high temperature H2 separation [J]. Journal of Membrane Science, 2014, 452: 127-142.
20 Wang M M, Zhou Y L, Tan X Y, et al. Nickel hollow fiber membranes for hydrogen separation from reformate gases and water gas shift reactions operated at high temperatures [J]. Journal of Membrane Science, 2019, 575: 89-97.
21 Ryi S K, Park J S, Choi S H, et al. Fabrication and characterization of metal porous membrane made of Ni powder for hydrogen separation [J]. Separation and Purification Technology, 2006, 47(3): 148-155.
22 Ernst B, Haag S, Burgard M. Permselectivity of a nickel/ceramic composite membrane at elevated temperatures: a new prospect in hydrogen separation? [J]. Journal of Membrane Science, 2007, 288(1/2): 208-217.
23 Lee S K, Ohn Y G, Noh S J. Measurement of hydrogen permeation through nickel in the elevated temperature range of 450 — 850℃ [J]. Journal of the Korean Physical Society, 2013, 63(10): 1955-1961.
24 Wang Z G, Kathiraser Y, Kawi S. High performance oxygen permeable membranes with Nb-doped BaBi0.05Co0.95O3-δ perovskite oxides [J]. Journal of Membrane Science, 2013, 431: 180-186.
25 Tan X Y, Liu Y T, Li K. Mixed conducting ceramic hollow-fiber membranes for air separation [J]. AIChE Journal, 2005, 51(7): 1991-2000.
26 Wang Z G, Kathiraser Y, Soh T, et al. Ultra-high oxygen permeable BaBiCoNb hollow fiber membranes and their stability under pure CH4 atmosphere [J]. Journal of Membrane Science, 2014, 465: 151-158.
27 Liu Y T, Li K. Preparation of SrCe0.95Yb0.05O3-α hollow fibre membranes: study on sintering processes [J]. Journal of Membrane Science, 2005, 259(1/2): 47-54.
28 Wang M M, Tan X Y, Wang X B, et al. Asymmetric nickel hollow fibres as the catalytic membrane reactor for CO2 hydrogenation into syngas [J]. Chemical Communications, 2019, 55(29): 4226-4229.
29 Cross A, Miller J T, Danghyan V, et al. Highly active and stable Ni-Cu supported catalysts prepared by combustion synthesis for hydrogen production from ethanol [J]. Applied Catalysis A: General, 2019, 572: 124-133.
30 Ogo S, Sekine Y. Recent progress in ethanol steam reforming using non-noble transition metal catalysts: a review [J]. Fuel Processing Technology, 2020, 199: 106238.
31 Jia H Y, Zhang J X, Yu J F, et al. Efficient H2 production via membrane-assisted ethanol steam reforming over Ir/CeO2 catalyst [J]. International Journal of Hydrogen Energy, 2019, 44(45): 24733-24745.
32 Jin Y, Rui Z B, Tian Y, et al. Autothermal reforming of ethanol in dense oxygen permeation membrane reactor [J]. Catalysis Today, 2016, 264: 214-220.
[1] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[2] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[3] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[4] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[5] 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO3-, SO42--H2O溶液的膜蒸馏结晶耦合过程调控[J]. 化工学报, 2022, 73(7): 3078-3089.
[6] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[7] 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211.
[8] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[9] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[10] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[11] 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894.
[12] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[13] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[14] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[15] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!