化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4675-4684.DOI: 10.11949/0438-1157.20210237
谢晶1,2,3(),舒歌平2,3,杨葛灵2,3,高山松2,3,王洪学2,3,卢晗锋1(),陈银飞1
收稿日期:
2021-02-07
修回日期:
2021-03-30
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
卢晗锋
作者简介:
谢晶(1981—),男,博士研究生,高级工程师,基金资助:
Jing XIE1,2,3(),Geping SHU2,3,Geling YANG2,3,Shansong GAO2,3,Hongxue WANG2,3,Hanfeng LU1(),Yinfei CHEN1
Received:
2021-02-07
Revised:
2021-03-30
Online:
2021-09-05
Published:
2021-09-05
Contact:
Hanfeng LU
摘要:
分别在Fe催化剂制备的沉淀、氧化和干燥阶段引入Mo合成了五种Mo修饰的钼铁复合催化剂,调控了Mo和Fe的结合形式。利用XRD、SEM、TEM、BET、XRF、XPS和H2-TPR对催化剂进行表征,在500 ml高压釜内进行神华上湾煤的直接液化实验。结果表明,钼铁协同催化作用促进了氢的活化和煤的分解,Mo修饰的复合催化剂的煤直接液化活性明显提高。Mo在催化剂表层分布有利于活性氢在工业循环溶剂和沥青类物质中的传递,促进沥青转化为油。Mo与Fe共沉淀会影响铁氧化物晶体形成和生长,使晶粒尺寸下降,比表面积和可还原度升高。Mo从氨水中引入形成均匀分散的小晶粒Mo-Fe复合化合物,液化油产率提高4.4%。浸渍引入Mo不改变铁氧化物结构,但Mo富集于催化剂表面提高了与反应物的碰撞概率,液化油产率提高5.0%。
中图分类号:
谢晶, 舒歌平, 杨葛灵, 高山松, 王洪学, 卢晗锋, 陈银飞. Mo修饰的钼铁复合催化剂及其煤直接液化催化性能[J]. 化工学报, 2021, 72(9): 4675-4684.
Jing XIE, Geping SHU, Geling YANG, Shansong GAO, Hongxue WANG, Hanfeng LU, Yinfei CHEN. Mo modified Mo-Fe composite catalysts and their catalytic performance in direct coal liquefaction[J]. CIESC Journal, 2021, 72(9): 4675-4684.
工业分析(质量分数) /% | 岩相分析φ/% | 元素分析(质量分数)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | Vitrinite | Inertinite | Exinite | C | H | O | N | S |
3.89 | 5.76 | 36.30 | 48.8 | 49.2 | 0.0 | 80.70 | 4.78 | 13.19 | 0.95 | 0.38 |
表1 神华上湾煤的煤质和岩相分析
Table 1 Proximate, ultimate and petrographical analyses of Shenhua Shangwan coal
工业分析(质量分数) /% | 岩相分析φ/% | 元素分析(质量分数)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | Vitrinite | Inertinite | Exinite | C | H | O | N | S |
3.89 | 5.76 | 36.30 | 48.8 | 49.2 | 0.0 | 80.70 | 4.78 | 13.19 | 0.95 | 0.38 |
密度/(g/cm3) | 芳碳率 | 供氢指数/(mg/g) | 元素分析(质量分数)/% | ||||
---|---|---|---|---|---|---|---|
C | H | S | N | O | |||
0.9905 | 0.49 | 18.88 | 89.490 | 9.718 | 0.003 | 0.021 | 0.768 |
表2 工业循环溶剂的性质
Table 2 The properties and ultimate analysis of the recycle solvent
密度/(g/cm3) | 芳碳率 | 供氢指数/(mg/g) | 元素分析(质量分数)/% | ||||
---|---|---|---|---|---|---|---|
C | H | S | N | O | |||
0.9905 | 0.49 | 18.88 | 89.490 | 9.718 | 0.003 | 0.021 | 0.768 |
催化剂 | 平均晶粒/nm | 比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm | (Mo/Fe)(XRF)/% | (Mo/Fe)(EDX)/% |
---|---|---|---|---|---|---|
Fe-0 | 14.9 | 76.0 | 0.29 | 15.2 | — | — |
Mo-Fe-1 | 12.3 | 141.6 | 0.48 | 13.4 | 4.94 | 5.05 |
Mo-Fe-2 | 12.1 | 150.6 | 0.46 | 12.1 | 5.11 | 1.70 |
Mo-Fe-3 | 11.3 | 133.4 | 0.43 | 13.0 | 5.02 | 3.86 |
Mo-Fe-4 | 15.3 | 79.5 | 0.26 | 12.9 | 1.51 | 0.88 |
Mo-Fe-5 | 14.9 | 81.6 | 0.26 | 12.6 | 4.88 | 10.94 |
表3 催化剂的织构性质和Mo含量
Table 3 Texture properties, Mo content of catalysts
催化剂 | 平均晶粒/nm | 比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm | (Mo/Fe)(XRF)/% | (Mo/Fe)(EDX)/% |
---|---|---|---|---|---|---|
Fe-0 | 14.9 | 76.0 | 0.29 | 15.2 | — | — |
Mo-Fe-1 | 12.3 | 141.6 | 0.48 | 13.4 | 4.94 | 5.05 |
Mo-Fe-2 | 12.1 | 150.6 | 0.46 | 12.1 | 5.11 | 1.70 |
Mo-Fe-3 | 11.3 | 133.4 | 0.43 | 13.0 | 5.02 | 3.86 |
Mo-Fe-4 | 15.3 | 79.5 | 0.26 | 12.9 | 1.51 | 0.88 |
Mo-Fe-5 | 14.9 | 81.6 | 0.26 | 12.6 | 4.88 | 10.94 |
催化剂 | 转化率(质量分数)/% | 氢耗(质量分数)/% | 产率(质量分数) /% | |||
---|---|---|---|---|---|---|
气体 | 水 | 沥青 | 油 | |||
Fe-0 | 86.7 | 4.1 | 14.9 | 12.7 | 7.9 | 55.3 |
MoO3 | 85.1 | 3.9 | 14.4 | 12.8 | 6.4 | 55.4 |
Mo-Fe-1 | 87.9 | 4.5 | 14.0 | 13.4 | 5.3 | 59.7 |
Mo-Fe-2 | 88.0 | 4.4 | 13.8 | 13.1 | 8.0 | 57.5 |
Mo-Fe-3 | 88.2 | 4.5 | 13.9 | 13.2 | 7.2 | 58.4 |
Mo-Fe-4 | 87.9 | 4.4 | 14.2 | 13.1 | 7.7 | 57.3 |
Mo-Fe-5 | 88.2 | 4.5 | 13.8 | 13.3 | 5.3 | 60.3 |
表4 催化剂的煤直接液化结果
Table 4 Results of direct coal liquefaction on catalysts
催化剂 | 转化率(质量分数)/% | 氢耗(质量分数)/% | 产率(质量分数) /% | |||
---|---|---|---|---|---|---|
气体 | 水 | 沥青 | 油 | |||
Fe-0 | 86.7 | 4.1 | 14.9 | 12.7 | 7.9 | 55.3 |
MoO3 | 85.1 | 3.9 | 14.4 | 12.8 | 6.4 | 55.4 |
Mo-Fe-1 | 87.9 | 4.5 | 14.0 | 13.4 | 5.3 | 59.7 |
Mo-Fe-2 | 88.0 | 4.4 | 13.8 | 13.1 | 8.0 | 57.5 |
Mo-Fe-3 | 88.2 | 4.5 | 13.9 | 13.2 | 7.2 | 58.4 |
Mo-Fe-4 | 87.9 | 4.4 | 14.2 | 13.1 | 7.7 | 57.3 |
Mo-Fe-5 | 88.2 | 4.5 | 13.8 | 13.3 | 5.3 | 60.3 |
1 | Ali A, Zhao C. Direct liquefaction techniques on lignite coal: a review[J]. Chinese Journal of Catalysis, 2020, 41(3): 375-389. |
2 | Vasireddy S, Morreale B, Cugini A, et al. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges[J]. Energy Environ. Sci., 2011, 4(2): 311-345. |
3 | 吴春来. 煤炭直接液化[M]. 北京: 化学工业出版社, 2010. |
Wu C L. Direct Coal Liquefaction[M]. Beijing: Chemical Industry Press, 2010. | |
4 | 刘振宇. 煤直接液化技术发展的化学脉络及化学工程挑战[J]. 化工进展, 2010, 29(2): 193-197. |
Liu Z Y. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 193-197. | |
5 | Mochida I, Okuma O, Yoon S H. Chemicals from direct coal liquefaction[J]. Chemical Reviews, 2014, 114(3): 1637-1672. |
6 | Yang Z Y, Zeng P, Wang B Y, et al. Ignition characteristics of an alternative kerosene from direct coal liquefaction and its blends with conventional RP-3 jet fuel[J]. Fuel, 2021, 291: 120258. |
7 | 曹宏伟, 李月婷, 王腾达, 等. 煤直接液化油制备航空航天燃料的工艺研究[J]. 含能材料, 2020, 28(5): 376-381. |
Cao H W, Li Y T, Wang T D, et al. Process of upgrading diret coal liquefaction oil to aerospace fuel[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 376-381. | |
8 | 舒歌平. 神华煤直接液化工艺开发历程及其意义[J]. 神华科技, 2009, 7(1): 78-82. |
Shu G P. Development history and its significance of Shenhua coal direct liquefaction[J]. Shenhua Science and Technology, 2009, 7(1): 78-82. | |
9 | Shui H F, Cai Z Y, Xu C B. Recent advances in direct coal liquefaction[J]. Energies, 2010, 3(2): 155-170. |
10 | Bacaud R. Dispersed phase catalysis: past and future, celebrating one century of industrial development[J]. Fuel, 2014, 117: 624-632. |
11 | Sheng J P, Baikenov M I, Liang X Y, et al. Rapid separation and large-scale synthesis of β-FeOOH nanospindles for direct coal liquefaction[J]. Fuel Processing Technology, 2017, 165: 80-86. |
12 | Liu B L, Li Y Z, Wu H, et al. Room-temperature solid-state preparation of CoFe2O4@Coal composites and their catalytic performance in direct coal liquefaction[J]. Catalysts, 2020, 10(5): 503. |
13 | Lokhat D, Carsky M. Direct coal liquefaction using iron carbonyl powder catalyst[J]. Chemical Engineering & Technology, 2019, 42(4): 818-826. |
14 | Kaneko T, Tazawa K, Koyama T, et al. Transformation of iron catalyst to the active phase in coal liquefaction[J]. Energy & Fuels, 1998, 12(5): 897-904. |
15 | Xie J, Lu H F, Shu G P, et al. The relationship between the microstructures and catalytic behaviors of iron-oxygen precursors during direct coal liquefaction[J]. Chinese Journal of Catalysis, 2018, 39(4): 857-866. |
16 | Mochida I, Sakanishi K, Suzuki N, et al. Progresses of coal liquefaction catalysts in Japan[J]. Catalysis Surveys from Asia, 1998, 2(1): 17-30. |
17 | 李克健, 吴秀章, 舒歌平. 煤直接液化技术在中国的发展[J]. 洁净煤技术, 2014, 20(2): 39-43. |
Li K J, Wu X Z, Shu G P. Development of direct coal liquefaction technologies in China[J]. Clean Coal Technology, 2014, 20(2): 39-43. | |
18 | Kaneko T, Derbyshire F, Makino E. Coal Liquefaction[M]∥ Ullmann’s Encyclopedia of Industrial Chemistry. Germany: Wiley-VCH, 2012. |
19 | 谢晶, 卢晗锋, 陈银飞, 等. 助剂改性FeOOH及其煤直接液化催化活性[J]. 化工学报, 2016, 67(5): 1892-1899. |
Xie J, Lu H F, Chen Y F, et al. Promoters modified FeOOH and their catalytic performances for direct coal liquefaction[J]. CIESC Journal, 2016, 67(5): 1892-1899. | |
20 | 谢晶, 舒歌平, 李克健, 等. 硅/铝改性FeOOH及其煤直接液化催化性能[J]. 煤炭转化, 2015, 38(4): 48-53, 57. |
Xie J, Shu G P, Li K J, et al. Study on Si/Al modified FeOOH and its catalytic performance of coal direct liquefaction[J]. Coal Conversion, 2015, 38(4): 48-53, 57. | |
21 | Hu H Q, Bai J F, Guo S C, et al. Coal liquefaction with in situ impregnated Fe2(MoS4)3 bimetallic catalyst[J]. Fuel, 2002, 81(11/12): 1521-1524. |
22 | 谢晶, 舒歌平, 高山松, 等. 高分散Mo基催化剂煤直接液化催化性能[J]. 高校化学工程学报, 2020, 34(5): 1182-1188. |
Xie J, Shu G P, Gao S S, et al. Catalytic performance of Mo based catalysts for direct coal liquefaction[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1182-1188. | |
23 | Wu C L, Luo Y, Zhao K, et al. Recycling molybdenum from direct coal liquefaction residue: a new approach to enhance recycling efficiency[J]. Catalysts, 2020, 10(3): 306. |
24 | 任锐, 王宗贤, 管翠诗, 等. 渣油悬浮床加氢水溶性催化剂预硫化研究(Ⅱ):钼酸盐硫化产物的XPS分析[J]. 燃料化学学报, 2005, 33(3): 299-303. |
Ren R, Wang Z X, Guan C S, et al. Study on the sulfurization of water-soluble catalysts for slurry-bed hydroprocessing of residue (Ⅱ): XPS analysis of sulfurized product of molybdate[J]. Journal of Fuel Chemistry and Technology, 2005, 33(3): 299-303. | |
25 | 吴艳, 赵鹏, 毛学锋. 煤液化条件下铁系催化剂的相变[J]. 煤炭学报, 2018, 43(5): 1448-1454. |
Wu Y, Zhao P, Mao X F. Phase transformation of iron-based catalyst at coal liquefaction[J]. Journal of China Coal Society, 2018, 43(5): 1448-1454. | |
26 | Zieliński J, Zglinicka I, Znak L, et al. Reduction of Fe2O3 with hydrogen[J]. Applied Catalysis A: General, 2010, 381(1/2): 191-196. |
27 | 尹周澜, 周桂芝, 赵秦生, 等. 钼酸铵在氢气气氛中的还原行为[J]. 中国有色金属学报, 1995, 5(1): 42-44. |
Yin Z L, Zhou G Z, Zhao Q S, et al. Reduction behavior of ammonium molybdate in hydrogen atmosphere[J]. Transactions of Nonferrous Metals Society of China, 1995, 5(1): 42-44. | |
28 | Ades H F, Companion A L, Subbaswamy K R. Molecular orbital calculations for iron catalysts[J]. Energy & Fuels, 1994, 8(1): 71-76. |
29 | 单贤根, 李克健, 章序文, 等. 神华上湾煤恒温阶段直接液化反应动力学[J].化工学报, 2017, 68(4): 1398-1406. |
Shan X G, Li K J, Zhang X W, et al. Isothermal kinetics of direct coal liquefaction for Shenhua Shangwan coal[J]. CIESC Journal, 2017, 68(4): 1398-1406. | |
30 | Li X, Hu S X, Jin L J, et al. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J]. Energy & Fuels, 2008, 22(2): 1126-1129. |
31 | 高山松. 显微组分及溶剂加氢对神东煤直接液化过程的影响[D]. 上海: 华东理工大学, 2016. |
Gao S S. Study on macerals and recycle solvent hydrotreatment in the Shendong coal liquefaction process[D]. Shanghai: East China University of Science and Technology, 2016. | |
32 | 史士东. 煤加氢液化工程学基础[M]. 北京: 化学工业出版社, 2012. |
Shi S D. Engineering Fundamentals of Direct Coal Liquefaction[M]. Beijing: Chemical Industry Press, 2012. | |
33 | Niu B, Jin L J, Li Y, et al. Mechanism of hydrogen transfer and role of solvent during heating-up stage of direct coal liquefaction[J]. Fuel Processing Technology, 2017, 160: 130-135. |
34 | McMillen D F, Malhotra R, Chang S J, et al. Mechanisms of hydrogen transfer and bond scission of strongly bonded coal structures in donor-solvent systems[J]. Fuel, 1987, 66(12): 1611-1620. |
[1] | 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703. |
[2] | 项小燕, 危依, 裴宝有, 丘荣星, 陈晓燕, 赵朝阳, 罗小燕, 林金清. 碱性离子液体协同配合剂催化葡萄糖异构化制备果糖[J]. 化工学报, 2020, 71(1): 290-296. |
[3] | 曲洋, 初茉, 朱书全, 张超, 郝成亮, 徐芳. 回转窑内利用液化残渣共热褐煤以抑制其粉化的影响因素分析[J]. 化工学报, 2018, 69(5): 2166-2174. |
[4] | 芮泽宝, 杨晓庆, 陈俊妃, 纪红兵. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958. |
[5] | 芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326. |
[6] | 张传江, 韩来喜, 蒋雪冬, 许明, 门卓武. 煤直接液化反应器循环杯的数值模拟及优化[J]. 化工学报, 2017, 68(7): 2703-2712. |
[7] | 单贤根, 李克健, 章序文, 王洪学, 曹雪萍, 江洪波, 翁惠新. 神华上湾煤恒温阶段直接液化反应动力学[J]. 化工学报, 2017, 68(4): 1398-1406. |
[8] | 谢晶, 卢晗锋, 陈银飞, 高山松, 王洪学. 助剂改性FeOOH及其煤直接液化催化活性[J]. 化工学报, 2016, 67(5): 1892-1899. |
[9] | 罗荣昌, 周贤太, 杨智, 张武英, 纪红兵. 均相体系中酸碱协同催化二氧化碳与环氧化物的环加成反应[J]. 化工学报, 2016, 67(1): 258-276. |
[10] | 赵变红, 刘康军, 张朝峰, 李瑞丰. 聚甲醛二甲醚合成反应中离子液体催化性能的比较[J]. 化工学报, 2013, 64(S1): 98-103. |
[11] | 乔建超,王建平,盛清涛,申 峻,凌开成. 由煤制取芳烃化合物的研究进展[J]. 化工进展, 2012, 31(08): 1717-1720. |
[12] | 刘 振 宇. 煤直接液化技术发展的化学脉络及化学工程挑战 [J]. CIESC Journal, 2010, 29(2): 193-. |
[13] | 熊楚安,王永刚,许德平. 中国直接液化油煤浆及液化残渣流变特性研究进展 [J]. CIESC Journal, 2009, 28(4): 597-. |
[14] | 陈 瑛,宋存义,张建祺. 协同催化臭氧化工艺对水中微量有机污染物的降解 [J]. CIESC Journal, 2006, 25(9): 1069-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||