化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1291-1299.DOI: 10.11949/0438-1157.20211351
刘立邦1,2,3(),杨颂1,3(),王志坚3,4(),贺欣欣4,赵文磊4,刘守军1,2,3,杜文广1,2,3,米杰2,3
收稿日期:
2021-09-17
修回日期:
2021-12-20
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
杨颂,王志坚
作者简介:
刘立邦(1997—),女,硕士研究生,基金资助:
Libang LIU1,2,3(),Song YANG1,3(),Zhijian WANG3,4(),Xinxin HE4,Wenlei ZHAO4,Shoujun LIU1,2,3,Wenguang DU1,2,3,Jie MI2,3
Received:
2021-09-17
Revised:
2021-12-20
Online:
2022-03-15
Published:
2022-03-14
Contact:
Song YANG,Zhijian WANG
摘要:
“双碳”背景下,提升焦炭质量是保证钢铁行业高质量发展的研究重点之一,而炼焦行业存在着在线实时监测难、焦炭质量预测模型泛化能力差等问题。为此,提出一种通过自适应全局搜索算法,即改进鲸鱼优化算法(WOA)与长短期记忆(LSTM)循环神经网络综合建模的方法来解决这一问题。首先选取出配合煤中可反映焦炭质量的可测参数,再运用主成分分析(PCA)去除变异性小的冗余因子后,得到预测因子,将其作为LSTM网络的外部输入;通过加入自适应惯性权重以及最佳扰动更新改进WOA,从而训练LSTM网络的超参数,采用均方根误差(RMSE)和R-squared 进行算法检验;最后将改进后的AGWOA-LSTM模型与典型的LSTM、WOA-LSTM模型进行对比,以验证本方法的优越性。结果表明AGWOA-LSTM模型预测焦炭质量具有精度高、运行速度快等特点。研究对焦炭生产具有一定的理论指导意义。
中图分类号:
刘立邦, 杨颂, 王志坚, 贺欣欣, 赵文磊, 刘守军, 杜文广, 米杰. 基于改进WOA-LSTM的焦炭质量预测[J]. 化工学报, 2022, 73(3): 1291-1299.
Libang LIU, Song YANG, Zhijian WANG, Xinxin HE, Wenlei ZHAO, Shoujun LIU, Wenguang DU, Jie MI. Prediction of coke quality based on improved WOA-LSTM[J]. CIESC Journal, 2022, 73(3): 1291-1299.
焦炭 | 入炉煤 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | M25 | 挥发分/% (质量) | M10 | 灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | 黏结 指数 | 挥发分/% (质量) | 细度/% (质量) |
12.71 | 0.80 | 7.90 | 90.00 | 1.04 | 7.60 | 9.88 | 1.03 | 12.95 | 51.50 | 25.59 | 88.40 |
12.90 | 0.86 | 11.40 | 88.50 | 1.14 | 10.00 | 9.69 | 1.01 | 11.45 | 50.50 | 23.34 | 88.40 |
12.76 | 0.67 | 9.55 | 86.30 | 1.04 | 11.70 | 10.23 | 0.89 | 10.50 | 52.00 | 25.42 | 82.65 |
14.15 | 0.79 | 4.45 | 91.40 | 1.35 | 6.40 | 10.19 | 0.84 | 10.30 | 53.00 | 24.39 | 82.85 |
13.75 | 0.56 | 7.25 | 90.90 | 1.29 | 7.60 | 10.80 | 0.75 | 11.65 | 56.00 | 26.03 | 80.85 |
14.25 | 0.59 | 10.85 | 87.60 | 1.16 | 10.40 | 10.58 | 0.75 | 10.55 | 65.00 | 26.76 | 81.05 |
13.43 | 0.62 | 7.30 | 90.40 | 1.23 | 7.10 | 10.33 | 0.76 | 9.35 | 65.50 | 27.23 | 79.75 |
13.73 | 0.62 | 7.20 | 86.70 | 1.22 | 12.10 | 10.08 | 0.73 | 10.00 | 57.00 | 25.78 | 84.65 |
13.14 | 0.63 | 7.25 | 88.50 | 1.06 | 9.50 | 10.45 | 0.79 | 9.50 | 55.50 | 26.16 | 81.05 |
13.87 | 0.52 | 9.20 | 88.70 | 1.29 | 8.60 | 10.12 | 0.71 | 10.40 | 54.50 | 25.98 | 80.80 |
13.40 | 0.64 | 4.50 | 90.30 | 1.08 | 7.80 | 10.07 | 0.80 | 9.60 | 54.00 | 24.85 | 83.05 |
表1 原始数据部分样本
Table 1 Part of the raw data
焦炭 | 入炉煤 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | M25 | 挥发分/% (质量) | M10 | 灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | 黏结 指数 | 挥发分/% (质量) | 细度/% (质量) |
12.71 | 0.80 | 7.90 | 90.00 | 1.04 | 7.60 | 9.88 | 1.03 | 12.95 | 51.50 | 25.59 | 88.40 |
12.90 | 0.86 | 11.40 | 88.50 | 1.14 | 10.00 | 9.69 | 1.01 | 11.45 | 50.50 | 23.34 | 88.40 |
12.76 | 0.67 | 9.55 | 86.30 | 1.04 | 11.70 | 10.23 | 0.89 | 10.50 | 52.00 | 25.42 | 82.65 |
14.15 | 0.79 | 4.45 | 91.40 | 1.35 | 6.40 | 10.19 | 0.84 | 10.30 | 53.00 | 24.39 | 82.85 |
13.75 | 0.56 | 7.25 | 90.90 | 1.29 | 7.60 | 10.80 | 0.75 | 11.65 | 56.00 | 26.03 | 80.85 |
14.25 | 0.59 | 10.85 | 87.60 | 1.16 | 10.40 | 10.58 | 0.75 | 10.55 | 65.00 | 26.76 | 81.05 |
13.43 | 0.62 | 7.30 | 90.40 | 1.23 | 7.10 | 10.33 | 0.76 | 9.35 | 65.50 | 27.23 | 79.75 |
13.73 | 0.62 | 7.20 | 86.70 | 1.22 | 12.10 | 10.08 | 0.73 | 10.00 | 57.00 | 25.78 | 84.65 |
13.14 | 0.63 | 7.25 | 88.50 | 1.06 | 9.50 | 10.45 | 0.79 | 9.50 | 55.50 | 26.16 | 81.05 |
13.87 | 0.52 | 9.20 | 88.70 | 1.29 | 8.60 | 10.12 | 0.71 | 10.40 | 54.50 | 25.98 | 80.80 |
13.40 | 0.64 | 4.50 | 90.30 | 1.08 | 7.80 | 10.07 | 0.80 | 9.60 | 54.00 | 24.85 | 83.05 |
成分 | 贡献率/% |
---|---|
黏结指数 | 61.2206 |
硫分 | 18.3321 |
灰分 | 13.4472 |
挥发分 | 4.1202 |
水分 | 2.7072 |
细度 | 0.1772 |
表2 主成分解释的各项变异性
Table 2 Variability of principal component explanations
成分 | 贡献率/% |
---|---|
黏结指数 | 61.2206 |
硫分 | 18.3321 |
灰分 | 13.4472 |
挥发分 | 4.1202 |
水分 | 2.7072 |
细度 | 0.1772 |
Model | Length of training/s | RMSE | R-squared |
---|---|---|---|
LSTM | 738 | 5.03×10-3 | 0.85 |
WOA-LSTM | 508 | 4.18×10-3 | 0.91 |
AGWOA-LSTM | 366 | 2.09×10-3 | 0.98 |
表3 模型性能对比
Table 3 Performance comparison of models
Model | Length of training/s | RMSE | R-squared |
---|---|---|---|
LSTM | 738 | 5.03×10-3 | 0.85 |
WOA-LSTM | 508 | 4.18×10-3 | 0.91 |
AGWOA-LSTM | 366 | 2.09×10-3 | 0.98 |
1 | 刘君贤. 焦炉生产过程焦炭质量与炼焦能耗智能预测模型[D]. 长沙: 中南大学, 2010. |
Liu J X. Intelligent prediction model of coke quality and energy consumption in coke oven production process [D]. Changsha: Central South University, 2010. | |
2 | 田英奇. 配煤炼焦试验优化与神经网络焦炭质量预测模型的研究[D]. 上海: 华东理工大学, 2016. |
Tian Y Q. Research on the optimization of coal-blending coking experiment and neural network coke quality prediction model[D]. Shanghai: East China University of Science and Technology, 2016. | |
3 | Malyi E I. Modification of poorly clinkering coal for use in coking[J]. Coke and Chemistry, 2014, 57(3): 87-90. |
4 | 高志芳, 朱书全, 崔荣健. 线性模型预测焦炭灰分[J]. 矿业快报, 2005, 21(10): 28-29. |
Gao Z F, Zhu S Q, Cui R J. Linear model predicting ash content in coke[J]. Express Information of Mining Industry, 2005, 21(10): 28-29. | |
5 | 张进春, 吴超. 基于多重多元回归的焦炭质量预测模型[J]. 科技导报, 2010, 28(12): 79-84. |
Zhang J C, Wu C. Coke quality prediction model based on multivariate regression[J]. Science & Technology Review, 2010, 28(12): 79-84.. | |
6 | 谢海深, 刘永新, 吕庆, 等. 焦炭质量预测模型[J]. 东北大学学报(自然科学版), 2007, 28(3): 373-377. |
Xie H S, Liu Y X, Lü Q, et al. Coke quality prediction models[J]. Journal of Northeastern University (Natural Science), 2007, 28(3): 373-377. | |
7 | 赵树果, 单晓云, 陈少敏, 等. 人工神经网络在炼焦配煤质量预测模型中的应用[J]. 中国煤炭, 2006, 32(7): 52-54. |
Zhao S G, Shan X Y, Chen S M, et al. Application of artificial neural network in prediction model of coking coal blending qualityl[J]. China Coal, 2006, 32(7): 52-54. | |
8 | 周洪, 闵礼书, 邹祥林. 基于神经网络的特大型焦炉焦炭质量预测研究[J]. 系统仿真学报, 2009, 21(6): 1543-1547, 1552. |
Zhou H, Min L S, Zou X L. Research on prediction of blended coal for coking quality in oversized coke furnace based on neural network[J]. Journal of System Simulation, 2009, 21(6): 1543-1547, 1552. | |
9 | 冯立颖. 改进的BP神经网络算法及其应用[J]. 计算机仿真, 2010, 27(12): 172-175. |
Feng L Y. Optimized BP neural networks algorithm and its application[J]. Computer Simulation, 2010, 27(12): 172-175. | |
10 | Zhou H, Yang C J, Liu W H, et al. A sliding-window T-S fuzzy neural network model for prediction of silicon content in hot metal[J]. IFAC-PapersOnLine, 2017, 50(1): 14988-14991. |
11 | Lemme A, Reinhart R F, Steil J J. Online learning and generalization of parts-based image representations by non-negative sparse autoencoders[J]. Neural Networks, 2012, 33: 194-203. |
12 | Wang X Z, Shao Q Y, Miao Q, et al. Architecture selection for networks trained with extreme learning machine using localized generalization error model[J]. Neurocomputing, 2013, 102: 3-9. |
13 | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
14 | Tang Y J, Xu J F, Matsumoto K, et al. Sequence-to-sequence model with attention for time series classification[C]//2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). Barcelona, Spain:IEEE, 2016: 503-510. |
15 | Pinheiro P, Collobert R, Jebarat, et al. Recurrent convolutional neural networks for scene labeling[C]//Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014: 82-90. |
16 | Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
17 | Liu J W, Chi G H, Liu Z Y, et al. Predicting protein structural classes with autoencoder neural networks[C]//2013 25th Chinese Control and Decision Conference (CCDC). Guiyang, China: IEEE, 2013: 1894-1899. |
18 | Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165-174. |
19 | Anang, Hadisupadmo S, Leksono E. Model predictive control design and performance analysis of a pasteurization process plant[C]//2016 International Conference on Instrumentation, Control and Automation (ICA). Bandung, Indonesia: IEEE, 2016: 81-87. |
20 | Yin S, Li X W, Gao H J, et al. Data-based techniques focused on modern industry: an overview[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 657-667. |
21 | Achanta S, Godambe T, Gangashetty S V. An investigation of recurrent neural network architectures for statistical parametric speech synthesis[C]//Interspeech 2015. ISCA, 2015: 859-863. |
22 | 耿志强, 曾荣甫, 徐圆, 等. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087. |
Geng Z Q, Zeng R F, Xu Y, et al. Intrusion detection of industrial control system based on grey wolf optimization integrated random black hole[J]. CIESC Journal, 2020, 71(3): 1080-1087. | |
23 | Zhang J Q, Sanderson A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. |
24 | 庞晓琼, 王竹晴, 曾建潮, 等. 基于PCA-NARX的锂离子电池剩余使用寿命预测[J]. 北京理工大学学报, 2019, 39(4): 406-412. |
Pang X Q, Wang Z Q, Zeng J C, et al. Prediction for the remaining useful life of lithium-ion battery based on PCA-NARX[J]. Transactions of Beijing Institute of Technology, 2019, 39(4): 406-412. | |
25 | 安剑奇, 陈易斐, 吴敏. 基于改进支持向量机的高炉一氧化碳利用率预测方法[J]. 化工学报, 2015, 66(1): 206-214. |
An J Q, Chen Y F, Wu M. A prediction method for carbon monoxide utilization ratio of blast furnace based on improved support vector regression[J]. CIESC Journal, 2015, 66(1): 206-214. | |
26 | 石博文, 尹燕燕, 刘飞. 基于PSO-控制变量参数化混合策略的间歇化工过程优化控制[J]. 化工学报, 2019, 70(3): 979-986. |
Shi B W, Yin Y Y, Liu F. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process[J]. CIESC Journal, 2019, 70(3): 979-986. | |
27 | 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. |
Jiao L C, Yang S Y, Liu F, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716. | |
28 | Wang Z J, Yang N N, Li N P, et al. A new fault diagnosis method based on adaptive spectrum mode extraction[J]. Structural Health Monitoring, 2021, 20(6): 3354-3370. |
29 | Pang Z H, Liu G P, Zhou D H, et al. Data-based predictive control for networked nonlinear systems with network-induced delay and packet dropout[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1249-1257. |
30 | Wang T, Gao H J, Qiu J B. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(2): 416-425. |
31 | Vazquez S, Rodriguez J, Rivera M, et al. Model predictive control for power converters and drives: advances and trends[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 935-947. |
32 |
Wang Z J, He X X, Yang B, et al. Subdomain adaptation transfer learning network for fault diagnosis of roller bearings[J]. IEEE Transactions on Industrial Electronics, 2021, doi:10.1109/TIE.2021.3108726 .
DOI |
33 | 雷琪, 刘君贤, 何勇, 等. 基于PCA与RBF的焦炭质量预测模型[J]. 控制工程, 2010, 17(4): 513-516, 520. |
Lei Q, Liu J X, He Y, et al. A prediction model for coke quality based on PCA and RBF[J]. Control Engineering of China, 2010, 17(4): 513-516, 520. | |
34 | Bazhin V Y, Titov O V. Analysis of the coking process on the basis of heat-flux calorimetry[J]. Coke and Chemistry, 2015, 58(7): 254-258. |
35 | Klenske E D, Zeilinger M N, Schölkopf B, et al. Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 110-121. |
36 | Cheng L, Liu W C, Hou Z G, et al. Neural-network-based nonlinear model predictive control for piezoelectric actuators[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7717-7727. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[3] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[4] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[5] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[6] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[7] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[8] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[9] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[10] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[11] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[12] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[13] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[14] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[15] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||