化工学报 ›› 2023, Vol. 74 ›› Issue (2): 487-499.DOI: 10.11949/0438-1157.20221089
陈毓明1,2,3(), 历伟1,2,3(), 严翔1,2,3, 王靖岱1,2,3,4(), 阳永荣1,2,3,4
收稿日期:
2022-07-30
修回日期:
2022-10-08
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
历伟,王靖岱
作者简介:
陈毓明(1992—),男,博士,助理研究员,chenym2@zju.edu.cn
基金资助:
Yuming CHEN1,2,3(), Wei LI1,2,3(), Xiang YAN1,2,3, Jingdai WANG1,2,3,4(), Yongrong YANG1,2,3,4
Received:
2022-07-30
Revised:
2022-10-08
Online:
2023-02-05
Published:
2023-03-21
Contact:
Wei LI, Jingdai WANG
摘要:
聚集态结构是实现聚乙烯高性能化的关键因素之一,本文从初生态聚乙烯聚集态结构设计出发,针对初生态超高分子量聚乙烯(UHMWPE)普遍存在的缠结过多、黏度过大、加工成型困难等问题,综述了初生态聚乙烯链缠结的表征方法、调控手段及其在聚乙烯产品高性能化中的作用等研究进展。重点从催化剂结构设计和聚合工艺设计两方面介绍了初生态聚乙烯链缠结的调控方法,提出在催化剂表面增大活性链生长间距(空间尺度)和聚合过程中引入“纳微气泡辅助的活性链休眠工艺”强化链结晶速率(时间尺度),缩小“链增长-链结晶”的“剪刀差”。上述两种调控方法为满足工业苛刻的生产要求基础上,实现低缠结聚乙烯的高效制备提供了理论指导。
中图分类号:
陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499.
Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene[J]. CIESC Journal, 2023, 74(2): 487-499.
76 | 王靖岱, 叶姝瑶, 戴进成, 等. 一种利用微气泡制备乙烯聚合物的方法: 110527008B[P]. 2020-10-30. |
Wang J D, Ye S Y, Dai J C, et al. Method for preparing ethylene polymer by microbubble: 110527008B[P]. 2020-10-30. | |
1 | 齐姝婧, 韩勇锡, 李梦涵, 等. 2020年国内外聚乙烯生产市场分析及发展建议[J]. 化学工业, 2021, 39(3): 27-35, 50. |
Qi S J, Han Y X, Li M H, et al. Analysis of polyethylene production market and development proposals in 2020[J]. Chemical Industry, 2021, 39(3): 27-35, 50. | |
2 | 宋倩倩, 王红秋, 王春娇, 等. 中国聚乙烯市场发展前景分析[J]. 合成树脂及塑料, 2021, 38(2): 71-76, 79. |
Song Q Q, Wang H Q, Wang C J, et al. Development prospect of polyethylene market in China[J]. China Synthetic Resin and Plastics, 2021, 38(2):71-76, 79. | |
3 | 刘朝艳. 2020—2021年世界塑料工业进展(Ⅰ): 通用塑料[J]. 塑料工业, 2022, 50(4): 1-16. |
Liu C Y. Progress of the world's plastics industry in 2020—2021(Ⅰ): General purposed plastics[J]. China Plastics Industry, 2022, 50(4): 1-16. | |
4 | 马龙. 全球聚乙烯供需分析与预测[J]. 世界石油工业, 2021, 28(4): 58-65. |
Ma L. Analysis and forecast of global polyethylene supply and demand[J]. World Petroleum Industry, 2021, 28(4): 58-65. | |
5 | 吴长江. 我国聚烯烃产业技术的现状与发展建议[J]. 科学通报, 2022, 67(17): 1853-1862. |
Wu C J. Status and future development suggestions for China's polyolefin industry[J]. Chinese Science Bulletin, 2022, 67(17): 1853-1862. | |
6 | 梁胜彪. 我国线性低密度聚乙烯的市场分析[J]. 石化技术, 2022, 29(1): 25-26, 29. |
Liang S B. Market analysis of linear low density polyethylene resin in China[J]. Petrochemical Industry Technology, 2022, 29(1): 25-26, 29. | |
7 | 谭捷. 我国聚乙烯的进口分析[J]. 石化技术, 2021, 28(10): 10-12. |
Tan J. Import analysis of polyethylene resin in China[J]. Petrochemical Industry Technology, 2021, 28(10): 10-12. | |
8 | 任慧勇. 我国聚乙烯产业现状及未来发展分析[J]. 化工新型材料, 2020, 48(7): 47-51. |
Ren H Y. Current situation and future development analysis of PE in China[J]. New Chemical Materials, 2020, 48(7): 47-51. | |
9 | 余黎明. 我国超高分子量聚乙烯行业发展现状及前景[J]. 化学工业, 2012, 30(9): 1-5, 15. |
Yu L M. Development status and prospect of UHMW PE industry in China[J]. Chemical Industry, 2012, 30(9): 1-5, 15. | |
10 | 齐姝婧, 韩勇锡, 张伟. 超高分子量聚乙烯生产及市场现状与应用领域[J]. 化学工业, 2017(3): 23-25, 54. |
Qi S J, Han Y X, Zhang W. Present situation and technical development of ultra-high molecular weight polyethylene[J]. Chemical Industry, 2017(3): 23-25, 54. | |
11 | Jacobs J J. The UHMWPE handbook. Ultra-high molecular weight polyethylene in total joint replacement[J]. The Journal of Bone and Joint Surgery-American Volume, 2005, 87(8): 1906. |
12 | Sauter D W, Taoufik M, Boisson C. Polyolefins, a success story[J]. Polymers, 2017, 9(6): 185. |
13 | Takeuchi D. Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions[J]. Dalton Transactions, 2010(2): 311-328. |
14 | 历伟, 孙婧元, 黄正梁, 等. 高性能聚乙烯产品设计[J]. 科学通报, 2022, 67(17): 1908-1922. |
Li W, Sun J Y, Huang Z L, et al. Synthesis of high-performance polyethylene[J]. Chinese Science Bulletin, 2022, 67(17): 1908-1922. | |
15 | McDaniel M P. Influence of porosity on PE molecular weight from the Phillips Cr/silica catalyst[J]. Journal of Catalysis, 2009, 261(1): 34-49. |
16 | Kaminsky W. The discovery of metallocene catalysts and their present state of the art[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(16): 3911-3921. |
17 | Severn J R, Chadwick J C, Duchateau R, et al. “Bound but not gagged”-immobilizing single-site α - o l e f i n polymerization catalysts[J]. Chemical Reviews, 2005, 105(11): 4073-4147. |
18 | Chen E Y X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts[J]. Chemical Reviews, 2009, 109(11): 5157-5214. |
19 | 陈毓明. 低缠结UHMWPE的制备及其与HDPE原位共混行为的研究[D]. 杭州: 浙江大学, 2020. |
Chen Y M. The synthesis of weakly entangled UHMWPE and its in situ blending with HDPE[D]. Hangzhou: Zhejiang University, 2020. | |
20 | Liu K S, de Boer E L, Yao Y F, et al. Heterogeneous distribution of entanglements in a nonequilibrium polymer melt of UHMWPE: influence on crystallization without and with graphene oxide[J]. Macromolecules, 2016, 49(19): 7497-7509. |
21 | Pandey A, Champouret Y, Rastogi S. Heterogeneity in the distribution of entanglement density during polymerization in disentangled ultrahigh molecular weight polyethylene[J]. Macromolecules, 2011, 44(12): 4952-4960. |
22 | Pawlak A. The entanglements of macromolecules and their influence on the properties of polymers[J]. Macromolecular Chemistry and Physics, 2019, 220(10): 1900043. |
23 | Romano D, Tops N, Andablo-Reyes E, et al. Influence of polymerization conditions on melting kinetics of low entangled UHMWPE and its implications on mechanical properties[J]. Macromolecules, 2014, 47(14): 4750-4760. |
24 | Rastogi S, Lippits D R, Peters G W M, et al. Heterogeneity in polymer melts from melting of polymer crystals[J]. Nature Materials, 2005, 4(8): 635-641. |
25 | Tracht U, Wilhelm M, Heuer A, et al. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance[J]. Physical Review Letters, 1998, 81(13): 2727-2730. |
26 | Graf R, Heuer A, Spiess H W. Chain-order effects in polymer melts probed by 1H double-quantum NMR spectroscopy[J]. Physical Review Letters, 1998, 80(26): 5738-5741. |
27 | Yao Y F, Jiang S Z, Rastogi S. 13C solid state NMR characterization of structure and orientation development in the narrow and broad molar mass disentangled UHMWPE[J]. Macromolecules, 2014, 47(4): 1371-1382. |
28 | Yao Y F, Rastogi S, Xue H J, et al. Segmental mobility in the noncrystalline regions of nascent polyethylene synthesized using two different catalytic systems with implications on solid-state deformation[J]. Polymer, 2013, 54(1): 411-422. |
29 | Spiess H W. 50th anniversary perspective: the importance of NMR spectroscopy to macromolecular science[J]. Macromolecules, 2017, 50(5): 1761-1777. |
30 | Lippits D R. Controlling the melting kinetics of polymers: a route to a new melt state[D]. Eindhoven: Eindhoven University of Technology, 2007. |
31 | Talebi S. Disentangled polyethylene with sharp molar mass distribution: implications for sintering[D]. Eindhoven: Eindhoven University of Technology, 2008. |
32 | Lippits D R, Rastogi S, Höhne G W H. Melting kinetics in polymers[J]. Physical Review Letters, 2006, 96(21): 218303. |
33 | Rastogi S, Lippits D R, Höhne G W H, et al. The role of the amorphous phase in melting of linear UHMW-PE; implications for chain dynamics[J]. Journal of Physics: Condensed Matter, 2007, 19(20): 205122. |
34 | Hawke L G D, Romano D, Rastogi S. Nonequilibrium melt state of ultra-high-molecular-weight polyethylene: a theoretical approach on the equilibrium process[J]. Macromolecules, 2019, 52(22): 8849-8866. |
35 | Smith P, Lemstra P J. Ultra-drawing of high molecular weight polyethylene cast from solution[J]. Colloid and Polymer Science, 1980, 258(7): 891-894. |
36 | Pennings A J, Smook J. Mechanical properties of ultra-high molecular weight polyethylene fibres in relation to structural changes and chain scissioning upon spinning and hot-drawing[J]. Journal of Materials Science, 1984, 19(10): 3443-3450. |
37 | Yeh J T, Chang S S, Wu T W. Effect of the ultradrawing behavior of gel films of ultrahigh-molecular-weight polyethylene and low-molecular-weight polyethylene blends on their physical properties[J]. Journal of Applied Polymer Science, 2008, 107(2): 854-862. |
38 | Bartczak Z, Kozanecki M. Influence of molecular parameters on high-strain deformation of polyethylene in the plane-strain compression(Part Ⅰ): Stress-strain behavior[J]. Polymer, 2005, 46(19): 8210-8221. |
39 | Ronca S, Forte G, Tjaden H, et al. Solvent-free solid-state-processed tapes of ultrahigh-molecular-weight polyethylene: influence of molar mass and molar mass distribution on the tensile properties[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7373-7381. |
40 | Ronca S, Igarashi T, Forte G, et al. Metallic-like thermal conductivity in a lightweight insulator: solid-state processed ultra high molecular weight polyethylene tapes and films[J]. Polymer, 2017, 123: 203-210. |
41 | Rastogi S, Kurelec L, Cuijpers J, et al. Disentangled state in polymer melts; a route to ultimate physical and mechanical properties[J]. Macromolecular Materials and Engineering, 2003, 288(12): 964-970. |
42 | 董澎, 王柯, 李军方, 等. 超高分子量聚乙烯烧结制品的链缠结调控及其对性能影响[J]. 高分子学报, 2020, 51(1): 117-124. |
Dong P, Wang K, Li J F, et al. Chain entanglement regulation of sintered ultrahigh molecular weight polyethylene and its effect on properties[J]. Acta Polymerica Sinica, 2020, 51(1): 117-124. | |
43 | Yue Z, Wang N, Cao Y, et al. Reduced entanglement density of ultrahigh-molecular-weight polyethylene favored by the isolated immobilization on the MgCl2 (110) plane[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3351-3358. |
44 | Wang H D, Yan X, Tang X, et al. Contribution of the initially entangled state and particle size to the sintering kinetics of UHMWPE[J]. Macromolecules, 2022, 55(4): 1310-1320. |
45 | Stürzel M, Mihan S, Mülhaupt R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites[J]. Chemical Reviews, 2016, 116(3): 1398-1433. |
46 | Stürzel M, Thomann Y, Enders M, et al. Graphene-supported dual-site catalysts for preparing self-reinforcing polyethylene reactor blends containing UHMWPE nanoplatelets and in situ UHMWPE shish-kebab nanofibers[J]. Macromolecules, 2014, 47(15): 4979-4986. |
47 | Stürzel M, Hees T, Enders M, et al. Nanostructured polyethylene reactor blends with tailored trimodal molar mass distributions as melt-processable all-polymer composites[J]. Macromolecules, 2016, 49(21): 8048-8060. |
48 | Hofmann D M, Kurek A, Thomann R, et al. Tailored nanostructured HDPE wax/UHMWPE reactor blends as additives for melt-processable all-polyethylene composites and in situ UHMWPE fiber reinforcement[J]. Macromolecules, 2017, 50(20): 8129-8139. |
49 | Wang Z, Solan G A, Zhang W J, et al. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization[J]. Coordination Chemistry Reviews, 2018, 363: 92-108. |
50 | Bariashir C, Huang C B, Solan G A, et al. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization[J]. Coordination Chemistry Reviews, 2019, 385: 208-229. |
51 | Yuan S F, Yan Y, Solan G A, et al. Recent advancements in N-ligated group 4 molecular catalysts for the (co)polymerization of ethylene[J]. Coordination Chemistry Reviews, 2020, 411: 213254. |
52 | Yang H Q, Hui L, Zhang J J, et al. Effect of entangled state of nascent UHMWPE on structural and mechanical properties of HDPE/UHMWPE blends[J]. Journal of Applied Polymer Science, 2017, 134(16): 44728. |
53 | Galland G B, dos Santos J H Z, Stedile F C, et al. Ethylene homo- and copolymerization using (nBuCp)2ZrCl2 grafted on silica modified with different spacers[J]. Journal of Molecular Catalysis A: Chemical, 2004, 210(1/2): 149-156. |
54 | Barrera E G, dos Santos J H Z. Designing polyethylene characteristics by modification of the support for FI catalyst[J]. Molecular Catalysis, 2017, 434: 1-6. |
55 | Pavoski G, Kalikoski R, Souza G, et al. Synthesis of polyethylene/silica-silver nanocomposites with antibacterial properties by in situ polymerization[J]. European Polymer Journal, 2018, 106: 92-101. |
56 | Barrera E G, Stedile F C, Brambilla R, et al. Broadening molecular weight polyethylene distribution by tailoring the silica surface environment on supported metallocenes[J]. Applied Surface Science, 2017, 393: 357-363. |
57 | Ronca S, Forte G, Tjaden H, et al. Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites[J]. Polymer, 2012, 53(14): 2897-2907. |
58 | Romano D, Ronca S, Rastogi S. A hemi-metallocene chromium catalyst with trimethylaluminum-free methylaluminoxane for the synthesis of disentangled ultra-high molecular weight polyethylene[J]. Macromolecular Rapid Communications, 2015, 36(3): 327-331. |
59 | Romano D, Tops N, Bos J, et al. Correlation between thermal and mechanical response of nascent semicrystalline UHMWPEs[J]. Macromolecules, 2017, 50(5): 2033-2042. |
60 | Chammingkwan P, Bando Y, Mai L T T, et al. Less entangled ultrahigh-molecular-weight polyethylene produced by nano-dispersed Ziegler-Natta catalyst[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 2818-2827. |
61 | Li W, Yang H Q, Shang M Y, et al. Structural and morphological evolution of nascent polyethylene during ethylene in situ polymerization within Fe3O4@SiO2 nanoparticles[J]. Industrial & Engineering Chemistry Research, 2016, 55(32): 8719-8725. |
62 | Chen M, Chen Y M, Li W, et al. Selective distribution and contribution of nickel based pre-catalyst in the multisite catalyst for the synthesis of desirable bimodal polyethylene[J]. European Polymer Journal, 2020, 135: 109878. |
63 | Li W, Hui L, Xue B, et al. Facile high-temperature synthesis of weakly entangled polyethylene using a highly activated Ziegler-Natta catalyst[J]. Journal of Catalysis, 2018, 360: 145-151. |
64 | Chen Y M, Liang P, Yue Z, et al. Entanglement formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts[J]. Macromolecules, 2019, 52(20): 7593-7602. |
65 | Breslow D S, Newburg N R. Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexes as soluble catalysts for the polymerization of ethylene[J]. Journal of the American Chemical Society, 1959, 81(1): 81-86. |
66 | Breslow D S, Newburg N R. Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexes as catalysts for the polymerization of ethylene[J]. Journal of the American Chemical Society, 1957, 79(18): 5072-5073. |
67 | Kaminsky W. Metallocene catalysts for olefin polymerization[J]. Studies in Surface Science and Catalysis, 1999, 121: 3-12. |
68 | Kaminsky W, Schupfner G. Defined synthesis of copolymers using metallocene catalysis[J]. Macromolecular Symposia, 2002, 177(1): 61-69. |
69 | Liang P, Chen Y M, Ren C J, et al. Efficient synthesis of low-polydispersity UHMWPE by elevating active sites on anchored POSS molecules[J]. Industrial & Engineering Chemistry Research, 2020, 59(45): 19964-19971. |
70 | Smith P, Chanzy H D, Rotzinger B P. Drawing of virgin ultrahigh molecular weight polyethylene: an alternative route to high strength/high modulus materials[J]. Journal of Materials Science, 1987, 22(2): 523-531. |
71 | Dai J C, Yu C J, Ye S Y, et al. The intermittent dormancy of ethylene polymerization with the assistance of nitrogen microbubbles[J]. Macromolecules, 2021, 54(20): 9418-9426. |
72 | 戴进成. 惰性介质对聚乙烯链段生长的“休眠”机制及其对分子链缠结的调控[D]. 杭州: 浙江大学, 2022. |
Dai J C. “Dormancy” effect of inert media on polyethylene segment growth and its regulation on the molecular chain entanglement[D]. Hangzhou: Zhejiang University, 2022. | |
73 | Ye S Y, Dai J C, Li W, et al. Tailoring the chain entanglement by nitrogen bubble-assisted polymerization[J]. Industrial & Engineering Chemistry Research, 2021, 60(44): 15951-15959. |
74 | 王涵鼎, 戴进成, 王靖岱, 等. 一种高性能聚乙烯的制备方法和装置: 112979844B[P]. 2022-03-25. |
Wang H D, Dai J C, Wang J D, et al. Method for preparing high-performance polyethylene and device thereof: 112979844B[P]. 2022-03-25. | |
75 | 历伟, 戴进成, 叶姝瑶, 等. 一种制备超高分子量解缠绕聚乙烯的聚合方法及其装置: 112521536A[P]. 2021-03-19. |
Li W, Dai J C, Ye S Y, et al. Polymerization method and device for preparing unwound polyethylene with ultra-high molecular weight: 112521536A[P]. 2021-03-19. |
[1] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[2] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[3] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[4] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[5] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[6] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[7] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
[8] | 赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892. |
[9] | 李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570. |
[10] | 王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940. |
[11] | 徐欢, 柯律, 张生辉, 张子林, 韩广东, 崔金声, 唐道远, 黄东辉, 高杰峰, 何新建. GO表面原位生长CNTs改善聚丙烯导热复合材料分散与界面形态[J]. 化工学报, 2022, 73(11): 5150-5157. |
[12] | 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183. |
[13] | 纪荣彬, 陈婷, 彭超华, 夏龙, 陈国荣, 罗伟昂, 曾碧榕, 许一婷, 袁丛辉, 戴李宗. 有机磷/硼杂化小分子阻燃改性环氧树脂[J]. 化工学报, 2021, 72(7): 3856-3868. |
[14] | 崔锦,石川,赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523. |
[15] | 余成明, 彭旭东, 江锦波, 马艺, 王玉明. 宽温域下氟醚橡胶的加速老化行为和机理研究[J]. 化工学报, 2021, 72(6): 3399-3410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||