化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5426-5436.DOI: 10.11949/0438-1157.20250260
收稿日期:2025-03-17
修回日期:2025-06-23
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
孔令健
作者简介:宋先行(2000—),男,硕士研究生,17660109550@163.com
基金资助:
Xianxing SONG(
), Xinyang ZHAO, Guangzhe LIU, Lingjian KONG(
)
Received:2025-03-17
Revised:2025-06-23
Online:2025-10-25
Published:2025-11-25
Contact:
Lingjian KONG
摘要:
为降低建筑运行能耗,空调新风系统的绿色低碳运行至关重要。膜式新风全热回收装置因其结构紧凑且热湿交换效率较高,在新风系统节能领域具有广泛的应用潜力。以聚偏氟乙烯(PVDF)为基材,采用氧化石墨烯(GO)和聚乙烯吡咯烷酮(PVP)等材料对其进行改性以强化热湿交换效率。测定了改性膜材料的水蒸气透过率,系统分析了其组分、表面特性及微观结构对水蒸气透过的影响机理。在新风热回收系统中,对改性PVDF膜材料构建的热回收芯体进行了实验研究。分析了温度、相对湿度和风量等因素对装置全热回收特性的影响规律,并建立了全热回收效率的预测模型。结果表明,GO含量为0.1 g、PVP含量为7.0 g时,改性PVDF膜材料接触角为39°,此时水蒸气透过量可提高至3641 g/(m²·d)。与商用膜相比,改性PVDF膜的全热回收效率平均提高29.7%,全热回收量平均提高33.7%。基于无量纲参数构建的预测模型与实验结果的偏差均在±5%以内,具备较高的预测精度。
中图分类号:
宋先行, 赵新阳, 刘广哲, 孔令健. 基于改性PVDF膜的新风全热回收特性研究[J]. 化工学报, 2025, 76(10): 5426-5436.
Xianxing SONG, Xinyang ZHAO, Guangzhe LIU, Lingjian KONG. Research on the total heat recovery characteristics of fresh air based on modified PVDF membranes[J]. CIESC Journal, 2025, 76(10): 5426-5436.
| 组别 | PVDF/g | DMAc/ml | DMF/ml | PVP/g | PEG/g | GO/g | LiCl/g |
|---|---|---|---|---|---|---|---|
| M1 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | — |
| M2 | 13.0 | 72.0 | 8.0 | 7.0. | — | 0.05 | — |
| M3 | 13.0 | 72.0 | 8.0 | 7.0 | — | 0.1 | — |
| M4 | 13.0 | 72.0 | 8.0 | 7.0 | — | 0.2 | — |
| M5 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | 1.0 |
| M6 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | 2.0 |
| M7 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | 3.0 |
| M8 | 13.0 | 69.0 | 8.0 | 10.0 | — | — | — |
| M9 | 13.0 | 65.0 | 8.0 | 14.0 | — | — | — |
| M10 | 13.0 | 72.0 | 8.0 | — | 7.0 | — | — |
| M11 | 13.0 | 69.0 | 8.0 | — | 10.0 | — | — |
| M12 | 13.0 | 65.0 | 8.0 | — | 14.0 | — | — |
表1 复合膜组分信息
Table 1 Composite membrane composition information
| 组别 | PVDF/g | DMAc/ml | DMF/ml | PVP/g | PEG/g | GO/g | LiCl/g |
|---|---|---|---|---|---|---|---|
| M1 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | — |
| M2 | 13.0 | 72.0 | 8.0 | 7.0. | — | 0.05 | — |
| M3 | 13.0 | 72.0 | 8.0 | 7.0 | — | 0.1 | — |
| M4 | 13.0 | 72.0 | 8.0 | 7.0 | — | 0.2 | — |
| M5 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | 1.0 |
| M6 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | 2.0 |
| M7 | 13.0 | 72.0 | 8.0 | 7.0 | — | — | 3.0 |
| M8 | 13.0 | 69.0 | 8.0 | 10.0 | — | — | — |
| M9 | 13.0 | 65.0 | 8.0 | 14.0 | — | — | — |
| M10 | 13.0 | 72.0 | 8.0 | — | 7.0 | — | — |
| M11 | 13.0 | 69.0 | 8.0 | — | 10.0 | — | — |
| M12 | 13.0 | 65.0 | 8.0 | — | 14.0 | — | — |
| 输入量 | 测量仪器 | 测量精度 | 测量不确定度 | 最大相对不确定度 |
|---|---|---|---|---|
| 温度 | 温度传感器 | ±0.2℃ | 1.2×10-1 K | 3.9% |
| 湿度 | 湿度传感器 | ±2% | 1.2 | 3.3% |
| 风量(间接测量) | 微压差传感器 | 1% | 115.5 Pa | 8.7% |
表2 不确定度计算结果
Table 2 Uncertainty calculation results
| 输入量 | 测量仪器 | 测量精度 | 测量不确定度 | 最大相对不确定度 |
|---|---|---|---|---|
| 温度 | 温度传感器 | ±0.2℃ | 1.2×10-1 K | 3.9% |
| 湿度 | 湿度传感器 | ±2% | 1.2 | 3.3% |
| 风量(间接测量) | 微压差传感器 | 1% | 115.5 Pa | 8.7% |
| [1] | Lyu W H, Wang Z C, Li X F, et al. Influential factors on the energy efficiency of fresh air systems in nearly zero energy buildings[J]. Energy and Buildings, 2024, 313: 114247. |
| [2] | Niu R P, Chen X Y, Liu H. Analysis of the impact of a fresh air system on the indoor environment in office buildings[J]. Sustainable Cities and Society, 2022, 83: 103934. |
| [3] | Zhang L Z. Progress on heat and moisture recovery with membranes: from fundamentals to engineering applications[J]. Energy Conversion and Management, 2012, 63: 173-195. |
| [4] | Cho W, Heo J, Park M H, et al. Energy performance and thermal comfort of integrated energy recovery ventilator system with air-conditioner for passive buildings[J]. Energy and Buildings, 2023, 295: 113302. |
| [5] | Gjennestad M A, Aursand E, Magnanelli E, et al. Performance analysis of heat and energy recovery ventilators using exergy analysis and nonequilibrium thermodynamics[J]. Energy and Buildings, 2018, 170: 195-205. |
| [6] | Kassai M, Al-Hyari L. Investigation of ventilation energy recovery with polymer membrane material-based counter-flow energy exchanger for nearly zero-energy buildings[J]. Energies, 2019, 12(9): 1727. |
| [7] | 沈志杰, 闵敬春. 薄膜输运性质对全热交换器结露特性影响[J]. 化工学报, 2020, 71(S2): 32-38. |
| Shen Z J, Min J C. Membrane transport property effects on moisture condensation of a membrane-type total heat exchanger[J]. CIESC Journal, 2020, 71(S2): 32-38. | |
| [8] | 沈志杰, 闵敬春, 段江菲. 入口空气参数分布对薄膜式全热交换器性能影响的数值研究[J]. 清华大学学报(自然科学版), 2020, 60(11): 958-966. |
| Shen Z J, Min J C, Duan J F. Numerical study on influence of supply inlet air parameter distribution on a membrane-type total heat exchanger[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(11): 958-966. | |
| [9] | Shen Z J, Zhu J W, Min J C. Airflow maldistribution effects on membrane-type total heat exchanger performance[J]. Journal of Enhanced Heat Transfer, 2021, 28(8): 83-97. |
| [10] | Duan J F, Min J C. Membrane-type total heat exchanger performance simulation with consideration of entrance effects[J]. Journal of Physics: Conference Series, 2017, 891: 012126. |
| [11] | Zhang L Z. Heat and mass transfer in a quasi-counter flow membrane-based total heat exchanger[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5478-5486. |
| [12] | Albdoor A K, Ma Z J, Cooper P. Experimental investigation and performance evaluation of a mixed-flow air to air membrane enthalpy exchanger with different configurations[J]. Applied Thermal Engineering, 2020, 166: 114682. |
| [13] | Gao N, Lei Y G, Wang Y H, et al. Effect of geometric parameters on the performance of a membrane-based enthalpy exchanger[J]. Chemical Engineering & Technology, 2023, 46(4): 794-802. |
| [14] | Shokrgozar Eslah S, Shokrollahzadeh S, Moini Jazani O, et al. Forward osmosis water desalination: fabrication of graphene oxide-polyamide/polysulfone thin-film nanocomposite membrane with high water flux and low reverse salt diffusion[J]. Separation Science and Technology, 2018, 53(3): 573-583. |
| [15] | Saleem H, Zaidi S J. Nanoparticles in reverse osmosis membranes for desalination: a state of the art review[J]. Desalination, 2020, 475: 114171. |
| [16] | He J L, Arbaugh T, Nguyen D, et al. Molecular mechanisms of thickness-dependent water desalination in polyamide reverse-osmosis membranes[J]. Journal of Membrane Science, 2023, 674: 121498. |
| [17] | 鞠佳, 祁文旭, 孔鹏飞, 等. TiO2/PVDF共混微滤膜的制备及其吸附胆红素的研究[J]. 化工学报, 2020, 71(6): 2705-2712. |
| Ju J, Qi W X, Kong P F, et al. Preparation of TiO2/PVDF blend microfiltration membrane and its adsorption of bilirubin[J]. CIESC Journal, 2020, 71(6): 2705-2712. | |
| [18] | Zhou Y, Zuo L, Rahman A, et al. Fabrication and excellent properties of polyvinylidene fluoride/graphene composite films as thermal interface materials[J]. Chinese Journal of Chemical Physics, 2024, 37(5): 671-678. |
| [19] | 乐茜蓉, 季旭, 徐海洋, 等. PEG/GO/TiO2纳米复合材料改性PVDF膜的制备及其抗污性能[J]. 精细化工, 2023, 40(4): 820-828. |
| Yue X R, Ji X, Xu H Y, et al. Preparation and antifouling performance of PVDF membranes modified with PEG/GO/TiO2 nanocomposites[J]. Fine Chemicals, 2023, 40(4): 820-828. | |
| [20] | 许晶翠, 张传禹, 葛天舒, 等. 海藻酸钠-醋酸纤维素复合薄膜的制备及除湿性能测试[J]. 化工学报, 2017, 68(1): 256-263. |
| Xu J C, Zhang C Y, Ge T S, et al. Preparation and dehumidification properties of sodium alginate-cellulose acetate composite membranes[J]. CIESC Journal, 2017, 68(1): 256-263. | |
| [21] | 李红林, 郝毅, 沈舒苏, 等. GO改性高效油水分离PVDF杂化膜制备及其性能[J]. 膜科学与技术, 2022, 42(4): 73-80. |
| Li H L, Hao Y, Shen S S, et al. Fabrication and properties of GO modified PVDF hybrid membrane for high efficiency oil-water separation[J]. Membrane Science and Technology, 2022, 42(4): 73-80. | |
| [22] | 汪洋. 氧化石墨烯(GO)基金属纳米颗粒与聚偏氟乙烯(PVDF)膜改性研究[D]. 上海: 上海应用技术大学, 2020. |
| Wang Y. Performance study on metal nanoparticle-graphene oxide (GO) based polyvinylidene fluoride (PVDF) membrane[D]. Shanghai: Shanghai Institute of Technology, 2020. | |
| [23] | 张炎, 张立志, 项辉, 等. 基于亲水/憎水复合膜的全热交换器换热换湿性能[J]. 化工学报, 2007, 58(2): 294-298. |
| Zhang Y, Zhang L Z, Xiang H, et al. Performance of heat and mass transfer based on hydrophilic/hydrophobic composite membrane[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 294-298. | |
| [24] | Meng N, Priestley R C E, Zhang Y Q, et al. The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes[J]. Journal of Membrane Science, 2016, 501: 169-178 |
| [25] | 陈剑波, 陈莹, 江盼. 基于被动房建筑的新风机组性能试验研究[J]. 流体机械, 2018, 46(7): 64-68. |
| Chen J B, Chen Y, Jiang P. Research on the performance test of fresh air handling unit based on passive house[J]. Fluid Machinery, 2018, 46(7): 64-68. | |
| [26] | 查小波, 张伦, 张小松. 蒸发冷却冷凝除湿复合新风系统优化[J]. 东南大学学报(自然科学版), 2018, 48(4): 646-653. |
| Zha X B, Zhang L, Zhang X S. Optimization of the compound fresh air treatment system of evaporative cooling and condensing dehumidification[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(4): 646-653. | |
| [27] | Tu A M, Zhao X S, Liu S J, et al. An analysis of the energy efficiency and control strategy of ERVs with energy recovery in different typical regions throughout the year[J]. Energies, 2025, 18(5): 1112. |
| [28] | Bai H Y, Liu P, Justo Alonso M, et al. A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112417. |
| [29] | Al-Waked R, Bani Mostafa D, Nasif M S. Performance of energy recovery ventilators under different climatic regions[J]. Energy Efficiency, 2021, 14(1): 8. |
| [30] | 奥德, 张皓冰, 吕美婵, 等. MOF-199@GO改性PVDF荷电纳滤膜的制备及其性能[J]. 化工学报, 2020, 71(S2): 297-305. |
| Ao D, Zhang H B, Lyu M C, et al. Preparation and properties of MOF-199@GO modified PVDF charged composite nanofiltration membrane[J]. CIESC Journal, 2020, 71(S2): 297-305. |
| [1] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [2] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [3] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [4] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [5] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [6] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [7] | 李卫, 陈浩, 柯钢, 黄孝胜, 李成娇, 郭航, 叶芳. 高原环境适应性试验室模拟平台新风系统仿真[J]. 化工学报, 2025, 76(S1): 360-369. |
| [8] | 吴迪, 胡斌, 姜佳彤. R1233zd(E)高温热泵实验研究与应用分析[J]. 化工学报, 2025, 76(S1): 377-383. |
| [9] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [10] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [11] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [12] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [13] | 张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871. |
| [14] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| [15] | 罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号