| [1] |
Tian Y, An Y L, Feng J K, et al. MXenes and their derivatives for advanced aqueous rechargeable batteries[J]. Materials Today, 2022, 52: 225-249.
|
| [2] |
Bommier C, Ji X L, Greaney P A. Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations[J]. Chemistry of Materials, 2019, 31(3): 658-677.
|
| [3] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
| [4] |
Rojo T, Hu Y S, Forsyth M, et al. Sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1800880.
|
| [5] |
An Y L, Tian Y, Wei C L, et al. Dealloying: an effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage[J]. Nano Today, 2021, 37: 101094.
|
| [6] |
Zhang X Q, Dong M F, Xiong Y L, et al. Aqueous rechargeable Li+/Na+ hybrid ion battery with high energy density and long cycle life[J]. Small, 2020, 16(41): 2003585.
|
| [7] |
Kim H, Kim J C, Bianchini M, et al. Recent progress and perspective in electrode materials for K-ion batteries[J]. Advanced Energy Materials, 2018, 8(9): 1702384.
|
| [8] |
Sunkari D, Deshmukh K, Panda S, et al. Recent progress in MXene-based materials for lithium-ion and lithium-sulphur batteries: a comprehensive review[J]. Journal of Energy Storage, 2024, 92: 112017.
|
| [9] |
Huang Z F, Farahmandjou M, Marlton F, et al. Surface and structure engineering of MXenes for rechargeable batteries beyond lithium[J]. Journal of Materiomics, 2024, 10(1): 253-268.
|
| [10] |
Siriwardane E M D, Demiroglu I, Sevik C, et al. Assessment of sulfur-functionalized MXenes for Li-ion battery applications[J]. The Journal of Physical Chemistry C, 2020, 124(39): 21293-21304.
|
| [11] |
Huang Y, Lu Q Q, Wu D L, et al. Flexible MXene films for batteries and beyond[J]. Carbon Energy, 2022, 4(4): 598-620.
|
| [12] |
Zhang Y S, Lu Q B, Zhang L S, et al. Adjustable MXene-based materials in metal-ion batteries: progress, prospects, and challenges[J]. Small Structures, 2024, 5(1): 2300255.
|
| [13] |
曹宇, 张国辉, 高昂, 等. 二维MXene材料在太阳能电池和金属离子电池中的研究进展[J]. 化工学报, 2024, 75(2): 412-428.
|
|
Cao Y, Zhang G H, Gao A, et al. Research progress of two-dimensional MXene materials in solar cells and metal-ion batteries[J]. CIESC Journal, 2024, 75(2): 412-428.
|
| [14] |
曹宇, 张国辉, 王长刚, 等. 二维六方Mo2B2作为金属离子电池负极材料的第一性原理研究[J]. 硅酸盐学报, 2024, 52(7): 2232-2242.
|
|
Cao Y, Zhang G H, Wang C G, et al. First principles study of two-dimensional h-Mo2B2 as a negative electrode for metal-ion batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2232-2242.
|
| [15] |
Shahzad U, Marwani P H M, Saeed M, et al. Two-dimensional MXenes as emerging materials: a comprehensive review[J]. ChemistrySelect, 2023, 8(25): e202300737.
|
| [16] |
Yang K, Liu Y X, Zhao F, et al. Multifunction of MXene in lithium-sulfur batteries: a review[J]. Energy & Fuels, 2024, 38(15): 13837-13857.
|
| [17] |
Shi J K, Du M, Chen Y H, et al. MXene functionalized cathodes, anodes, and separators for batteries[J]. Chemical Engineering Journal, 2025, 507: 160809.
|
| [18] |
Li M, Lu J, Luo K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737.
|
| [19] |
Huang P F, Han W Q. Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes[J]. Nano-Micro Letters, 2023, 15(1): 68.
|
| [20] |
Er D Q, Li J W, Naguib M, et al. Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11173-11179.
|
| [21] |
ÇakIr D, Sevik C, Gülseren O, et al. Mo2C as a high capacity anode material: a first-principles study[J]. Journal of Materials Chemistry A, 2016, 4(16): 6029-6035.
|
| [22] |
Zhang L L, Chen Y G, Yu L H, et al. Efficient sulfur atom-doped three-dimensional porous MXene-assisted sodium ion batteries[J]. Dalton Transactions, 2024, 53(15): 6583-6591.
|
| [23] |
Luo H X, Long P, Xiao J R, et al. Mo2CS2 MXene as a promising anode material for metal ion batteries: a first-principles study[J]. Materials Today Communications, 2024, 38: 108285.
|
| [24] |
Meng Q Q, Ma J L, Zhang Y H, et al. The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: a DFT study[J]. Nanoscale, 2018, 10(7): 3385-3392.
|
| [25] |
Yan T X, Xiao M X, Song H Y, et al. S- and Cl-functionalized Nb2C MXenes as novel anode materials for sodium-ion batteries: a first-principles study[J]. New Journal of Chemistry, 2023, 47(13): 6412-6419.
|
| [26] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
|
| [27] |
Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
|
| [28] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
| [29] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
|
| [30] |
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
|
| [31] |
Togo A, Tanaka I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5.
|
| [32] |
Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360.
|
| [33] |
Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000, 113(22): 9901-9904.
|
| [34] |
Mohammadi M, Noori B. Simulation of Ti2N and S/Se-functionalized Ti2N electrode in ion-batteries[J]. Physica B: Condensed Matter, 2023, 668: 415239.
|
| [35] |
Liu H L, Cai Y M, Guo Z D, et al. Two-dimensional V2N MXene monolayer as a high-capacity anode material for lithium-ion batteries and beyond: first-principles calculations[J]. ACS Omega, 2022, 7(21): 17756-17764.
|
| [36] |
Lu X F, Qi J P, Ren J Q, et al. First-principles study of the effect of O and S functional groups on the lithium storage properties of Zr2N materials[J]. Journal of Materials Chemistry C, 2024, 12(6): 2227-2240.
|
| [37] |
Yin X P, Lu Z X, Wang J, et al. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage[J]. Advanced Materials, 2022, 34(13): 2109282.
|
| [38] |
Massaro A, Muñoz-García A B, Maddalena P, et al. First-principles study of Na insertion at TiO2 anatase surfaces: new hints for Na-ion battery design[J]. Nanoscale Advances, 2020, 2(7): 2745-2751.
|
| [39] |
Masood M K, Liu K, Wang J, et al. Theoretical prediction of stable WB4 monolayer as a high-capacity anode material for alkali-metal ion batteries[J]. Journal of Physics and Chemistry of Solids, 2024, 186: 111814.
|
| [40] |
Muhammad I, Wang S, Liu J Y, et al. Boron-graphdiyne as an anode material for Li, Na, and K ion batteries with high capacities and low diffusion barriers[J].Journal of Renewable and Sustainable Energy, 2019, 11(1): 014106.
|