化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6718-6728.DOI: 10.11949/0438-1157.20250292

• 材料化学工程与纳米技术 • 上一篇    下一篇

Cu阳离子空位提升钙钛矿型高熵氧化物储锂性能

徐世彪1(), 韦正兵1, 鲍梦凡1, 程怡1, 贾洋刚1, 林娜1, 冒爱琴1,2()   

  1. 1.安徽工业大学材料科学与工程学院,先进陶瓷研究中心,安徽 马鞍山 243032
    2.安徽工业大学,氢电高效转化与固态存储安徽省重点实验室,安徽 马鞍山 243032
  • 收稿日期:2025-03-24 修回日期:2025-05-11 出版日期:2025-12-31 发布日期:2026-01-23
  • 通讯作者: 冒爱琴
  • 作者简介:徐世彪(2000—),男,硕士研究生,xushibiao002@163.com
  • 基金资助:
    安徽省高校自然科学研究重点项目(2023AH051104);氢电高效转化与固态存储安徽省重点实验室开放基金(ECSSHE2024KF05)

Cu cation vacancies enhance the lithium storage performance of perovskite-type high-entropy oxides

Shibiao XU1(), Zhengbing WEI1, Mengfan BAO1, Yi CHENG1, Yanggang JIA1, Na LIN1, Aiqin MAO1,2()   

  1. 1.Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243032, Anhui, China
    2.Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Ma’anshan 243032, Anhui, China
  • Received:2025-03-24 Revised:2025-05-11 Online:2025-12-31 Published:2026-01-23
  • Contact: Aiqin MAO

摘要:

高熵氧化物(HEOs)因其优异的循环稳定性和较高的理论比容量在储能领域备受关注,但其本征电导率较低限制了其应用。本研究通过调控La(Cr0.2Fe0.2Mn0.2Ni0.2Cu x0.2-x )O3-δx=0、0.1和0.2)中Cu含量,优化阳离子/氧空位,在稳定钙钛矿结构的同时协同改善微观/电子结构,提升电子/离子传输速率,增强电化学性能。结果表明,La(Cr0.2Fe0.2Mn0.2Ni0.2Cu0.10.1)O3-δ 具有优异的高倍率储锂性能:200 mA·g-1时循环250圈后比容量达1174.3 mAh·g-1,较x=0.2的样品提升1.3倍;在3000 mA·g-1高倍率下仍保持200.1 mAh·g-1的比容量(容量保持率相较100 mA·g-1时为49.6%),倍率性能提升4倍。本研究通过调控阳离子/氧空位缺陷,有效提升了钙钛矿型HEO的电化学性能,为开发高性能HEOs负极材料提供了新的设计策略。

关键词: 阳离子空位, 高熵钙钛矿氧化物, 纳米材料, 锂离子电池负极材料, 电化学, 动力学

Abstract:

High-entropy oxides (HEOs) have attracted much attention in the field of energy storage due to their excellent cycle stability and high theoretical specific capacity, but their low intrinsic conductivity limits their application. In this study, the Cu content in La(Cr0.2Fe0.2Mn0.2Ni0.2Cu x0.2-x )O3-δ (x=0, 0.1 and 0.2) was systematically modulated to optimize cation/oxygen vacancies, synergistically improving the microstructure and electronic structure while stabilizing the perovskite framework. This optimization enhanced both electron/ion transport kinetics and electrochemical performance. The results demonstrate that La(Cr0.2Fe0.2Mn0.2Ni0.2Cu0.10.1)O3-δ exhibits outstanding high-rate lithium storage performance: a specific capacity of 1174.3 mAh·g-1 after 250 cycles at 200 mA·g-1, representing a 1.3-fold improvement over the x = 0.2 sample. Even at a high current density of 3000 mA·g-1, it maintains a specific capacity of 200.1 mAh·g-1 (49.6% capacity retention relative to 100 mA·g-1), with a fourfold enhancement in rate capability. By strategically regulating cation/oxygen vacancy defects, this study effectively improves the electrochemical performance of perovskite-type HEOs, offering a novel design strategy for developing high-performance HEO anode materials.

Key words: cation vacancy, high-entropy perovskite oxides, nanomaterials, lithium-ion batteries anode materials, electrochemistry, kinetics

中图分类号: