化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4205-4216.DOI: 10.11949/0438-1157.20250053
张晓晨1(
), 鲁中山1, 郭腾1, 桂恒2, 宋红兵1, 肖盟1(
)
收稿日期:2025-01-13
修回日期:2025-04-14
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
肖盟
作者简介:张晓晨(1998—),女,硕士研究生,2457107890@qq.com
Xiaochen ZHANG1(
), Zhongshan LU1, Teng GUO1, Heng GUI2, Hongbing SONG1, Meng XIAO1(
)
Received:2025-01-13
Revised:2025-04-14
Online:2025-08-25
Published:2025-09-17
Contact:
Meng XIAO
摘要:
端羟基聚丁二烯(HTPB)是丁羟推进剂的重要组分,随着武器弹药的退役升级,废弃丁羟推进剂的处理对环境带来了重大的挑战。本研究从炼厂污泥中分离出一株以HTPB为唯一碳源的假单胞菌HM6。采用凝胶渗透色谱法测定了降解前后HTPB的分子量分布,采用傅里叶变换红外光谱、核磁共振氢谱和气相色谱-质谱联用法对降解产物进行了表征。HTPB降解后产生两种低分子量化合物,数均分子量由降解前的9523 g/mol分别降低至6809 g/mol和366 g/mol,中间代谢产物包括醛类、醇类和羧酸类等化合物。通过基因组和转录分析,发现编码铜氧化酶、醛脱氢酶、水解酶等基因且表达量均上调。基于化学表征和基因组分析,提出了菌株HM6对HTPB降解的途径。本研究为利用微生物降解废弃丁羟推进剂提供了理论依据。
中图分类号:
张晓晨, 鲁中山, 郭腾, 桂恒, 宋红兵, 肖盟. 一株端羟基聚丁二烯降解菌的筛选及降解机理研究[J]. 化工学报, 2025, 76(8): 4205-4216.
Xiaochen ZHANG, Zhongshan LU, Teng GUO, Heng GUI, Hongbing SONG, Meng XIAO. Isolation and study of the degradation mechanism of hydroxyl-terminated polybutadiene-degrading strain[J]. CIESC Journal, 2025, 76(8): 4205-4216.
图7 实验组(HM6-T)和对照组(HM6-CK)差异表达基因的GO和KEGG富集分析
Fig.7 GO and KEGG enrichment analysis of differentially expressed genes between group HM6-T and group HM6-CK
| KEGG | 基因编号 | 名称 | 基因描述 | 显著性 | 上/下调情况 |
|---|---|---|---|---|---|
| K01692 | gene2244 | paaF | crotonase/enoyl-CoA hydratase family protein | yes | up |
| K00059 | gene1731 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up |
| gene2659 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up | |
| K00249 | gene0772 | acd | acyl-CoA dehydrogenase family protein | yes | up |
| gene2751 | bcd | acyl-CoA dehydrogenase | yes | down | |
| K22552 | gene1654 | copper oxidase | yes | up | |
| K00257 | gene2983 | acd | acyl-CoA/acyl-ACP dehydrogenase | yes | up |
| K00128 | gene0641 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down |
| gene0924 | MULTISPECIES: aldehyde dehydrogenase family protein | yes | up | ||
| gene2891 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down | |
| gene4094 | mmsA | MULTISPECIES: CoA-acylating methylmalonate-semialdehyde dehydrogenase | yes | up |
表1 参与HTPB降解的基因
Table 1 Genes involved in HTPB degradation
| KEGG | 基因编号 | 名称 | 基因描述 | 显著性 | 上/下调情况 |
|---|---|---|---|---|---|
| K01692 | gene2244 | paaF | crotonase/enoyl-CoA hydratase family protein | yes | up |
| K00059 | gene1731 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up |
| gene2659 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up | |
| K00249 | gene0772 | acd | acyl-CoA dehydrogenase family protein | yes | up |
| gene2751 | bcd | acyl-CoA dehydrogenase | yes | down | |
| K22552 | gene1654 | copper oxidase | yes | up | |
| K00257 | gene2983 | acd | acyl-CoA/acyl-ACP dehydrogenase | yes | up |
| K00128 | gene0641 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down |
| gene0924 | MULTISPECIES: aldehyde dehydrogenase family protein | yes | up | ||
| gene2891 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down | |
| gene4094 | mmsA | MULTISPECIES: CoA-acylating methylmalonate-semialdehyde dehydrogenase | yes | up |
| 降解时间 | 组分1 | 组分2 | ||||
|---|---|---|---|---|---|---|
Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | |
| 原样 | 9523 | 22364 | 2.350 | — | — | — |
| 对照组(28d) | 9426 | 20882 | 2.220 | — | — | — |
| 5 d | 9179 | 19808 | 2.160 | 682 | 784 | 1.150 |
| 10 d | 8767 | 19406 | 2.210 | 716 | 806 | 1.330 |
| 14 d | 6932 | 16141 | 2.328 | 383 | 652 | 1.701 |
| 21 d | 6857 | 15968 | 2.329 | 394 | 648 | 1.644 |
| 28 d | 6809 | 15795 | 2.320 | 366 | 617 | 1.685 |
表2 HTPB降解前后HTPB分子量分布
Table 2 Distribution of HTPB molecular mass before and after degradation
| 降解时间 | 组分1 | 组分2 | ||||
|---|---|---|---|---|---|---|
Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | |
| 原样 | 9523 | 22364 | 2.350 | — | — | — |
| 对照组(28d) | 9426 | 20882 | 2.220 | — | — | — |
| 5 d | 9179 | 19808 | 2.160 | 682 | 784 | 1.150 |
| 10 d | 8767 | 19406 | 2.210 | 716 | 806 | 1.330 |
| 14 d | 6932 | 16141 | 2.328 | 383 | 652 | 1.701 |
| 21 d | 6857 | 15968 | 2.329 | 394 | 648 | 1.644 |
| 28 d | 6809 | 15795 | 2.320 | 366 | 617 | 1.685 |
| 序号 | 保留时间/min | 化学式 | 鉴定产物 |
|---|---|---|---|
| 1 | 2.518 | CH4O | 甲醇 |
| 2 | 18.079 | C17H34O2 | 棕榈酸甲酯 |
| 3 | 19.665 | C19H40O | 十九烷醇 |
| 4 | 20.019 | C19H38O2 | 硬酯酸甲酯C18 |
| 5 | 20.758 | C22H44O2 | 正二十醋酸 |
| 6 | 21.575 | C20H42 | 正二十烷 |
| 7 | 22.069 | C21H38O4 | 一亚油酸甘油酯 |
| 8 | 22.420 | C23H32O2 | 抗氧剂2246 |
| 9 | 23.990 | C36H74 | 正三十六烷 |
| 10 | 25.465 | C34H70 | 正三十四烷 |
| 11 | 26.917 | C44H90 | 四十四烷 |
表3 GC-MS检测结果
Table 3 Products detected by GC-MS
| 序号 | 保留时间/min | 化学式 | 鉴定产物 |
|---|---|---|---|
| 1 | 2.518 | CH4O | 甲醇 |
| 2 | 18.079 | C17H34O2 | 棕榈酸甲酯 |
| 3 | 19.665 | C19H40O | 十九烷醇 |
| 4 | 20.019 | C19H38O2 | 硬酯酸甲酯C18 |
| 5 | 20.758 | C22H44O2 | 正二十醋酸 |
| 6 | 21.575 | C20H42 | 正二十烷 |
| 7 | 22.069 | C21H38O4 | 一亚油酸甘油酯 |
| 8 | 22.420 | C23H32O2 | 抗氧剂2246 |
| 9 | 23.990 | C36H74 | 正三十六烷 |
| 10 | 25.465 | C34H70 | 正三十四烷 |
| 11 | 26.917 | C44H90 | 四十四烷 |
| [1] | Kohga M. From cross-linking to plasticization–characterization of glycerin/HTPB blends[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(5): 436-443. |
| [2] | Mohan Y M, Raju K M. Synthesis and characterization of HTPB-GAP cross-linked co-polymers[J]. Designed Monomers and Polymers, 2005, 8(2): 159-175. |
| [3] | Luo Y L, Miao Y, Xu F. Synthesis, phase behavior, and simulated in vitro degradation of novel HTPB-b-PEG polyurethane copolymers[J]. Macromolecular Research, 2011, 19(12): 1233-1241. |
| [4] | Medchill C, Perezselsky A A, Cortopassi A, et al. Transient plasma enhanced combustion of solid rocket propellants[J]. Aerospace Science and Technology, 2024, 148: 109107. |
| [5] | 李立远, 张丽华, 王鹏, 等. 废弃丁羟推进剂的处理与再利用研究进展[J]. 河南化工, 2010, 27(24): 3-7. |
| Li L Y, Zhang L H, Wang P, et al. Research progress on treatment and reuse of waste HTPB propellants[J]. Henan Chemical Industry, 2010, 27(24): 3-7. | |
| [6] | 鲁彦玲, 张力, 施冬梅, 等. 废弃发射药的再利用研究[J]. 环境科学与技术, 2006, 29(S1): 147-150. |
| Lu Y L, Zhang L, Shi D M, et al. Study on the reusing obsolete propellant[J]. Environmental Science & Technology, 2006, 29(S1): 147-150. | |
| [7] | Ganesh K, Sundarrajan S, Kishore K, et al. Primary pyrolysis products of hydroxy-terminated polybutadiene[J]. Macromolecules, 2000, 33(2): 326-330. |
| [8] | Williams P T. Pyrolysis of waste tyres: a review[J]. Waste Management, 2013, 33(8): 1714-1728. |
| [9] | 仪建华, 赵凤起, 李上文, 等. 美俄废弃火箭发动机装药绿色销毁与回收技术研究进展[J]. 化学推进剂与高分子材料, 2006, 4(6): 25-27, 37. |
| Yi J H, Zhao F Q, Li S W, et al. Research progress of green destruction and reclamation technology of obsolete rocket motor charge in America and Russia[J]. Chemical Propellants & Polymeric Materials, 2006, 4(6): 25-27, 37. | |
| [10] | Zhang Y, Zou M, Lodhi A F, et al. Microbial degradation and community structure analysis of hydroxyl-terminated polybutadiene (HTPB)[J]. AMB Express, 2021, 11(1): 180. |
| [11] | Wu K, Liu Y C, Ma Y, et al. Pretreatment of hydroxy-terminated polybutadiene (HTPB)/toluene diisocyanate (TDI) binder system for biodegradation[J]. Advanced Composites and Hybrid Materials, 2021, 4(1): 96-103. |
| [12] | 吴凯. 废弃丁羟推进剂黏合体系生物降解方法及机理[D]. 太原: 中北大学, 2021. |
| Wu K. Biodegradation method and mechanism of binder system waste from HTPB propellant[D]. Taiyuan: North University of China, 2021. | |
| [13] | Imai S, Ichikawa K, Muramatsu Y, et al. Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene)[J]. Enzyme and Microbial Technology, 2011, 49(6/7): 526-531. |
| [14] | Bröker D, Dietz D, Arenskötter M, et al. The genomes of the non-clearing-zone-forming and natural-rubber-degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains[J]. Applied and Environmental Microbiology, 2008, 74(8): 2288-2297. |
| [15] | Ibrahim E M A, Arenskötter M, Luftmann H, et al. Identification of poly(cis-1, 4-isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1[J]. Applied and Environmental Microbiology, 2006, 72(5): 3375-3382. |
| [16] | Roy R V, Das M, Banerjee R, et al. Comparative studies on crosslinked and uncrosslinked natural rubber biodegradation by Pseudomonas sp.[J]. Bioresource Technology, 2006, 97(18): 2485-2488. |
| [17] | Yikmis M, Arenskötter M, Rose K, et al. Secretion and transcriptional regulation of the latex-clearing protein, Lcp, by the rubber-degrading bacterium Streptomyces sp. strain K30[J]. Applied and Environmental Microbiology, 2008, 74(17): 5373-5382. |
| [18] | Rose K, Tenberge K B, Steinbüchel A. Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation [J]. Biomacromolecules, 2005, 6(1): 180-188. |
| [19] | Nayanashree G, Thippeswamy B. Biodegradation of natural rubber by laccase and manganese peroxidase enzyme of Bacillus subtilis [J]. Environmental Processes, 2015, 2(4): 761-772. |
| [20] | Vivod R, Oetermann S, Hiessl S, et al. Oligo(cis-1,4-isoprene) aldehyde-oxidizing dehydrogenases of the rubber-degrading bacterium Gordonia polyisoprenivorans VH2[J]. Applied Microbiology and Biotechnology, 2017, 101(21): 7945-7960. |
| [21] | Song F, Li C, Zhang N, et al. A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota[J]. Postharvest Biology and Technology, 2023, 196: 112176. |
| [22] | Zhang N, Ding M Z, Yuan Y J. Current advances in biodegradation of polyolefins [J]. Microorganisms, 2022, 10(8): 1537. |
| [23] | Iiyoshi Y, Tsutsumi Y, Nishida T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase[J]. Journal of Wood Science, 1998, 44(3): 222-229. |
| [24] | Zhang Y, Pedersen J N, Eser B E, et al. Biodegradation of polyethylene and polystyrene: from microbial deterioration to enzyme discovery[J]. Biotechnology Advances, 2022, 60: 107991. |
| [25] | Cheng Y J, Wei Y C, Wu H L, et al. Biodegradation of vulcanized natural rubber by enriched bacterial consortia[J]. Chemical Engineering Journal, 2024, 481: 148685. |
| [26] | Ma Y X, Yan F, An L L, et al. Transcriptome analysis of changes in M. aeruginosa growth and microcystin production under low concentrations of ethinyl estradiol[J]. Science of the Total Environment, 2023, 859: 160226. |
| [27] | Wang F, Du W, Huang W X, et al. Linkages of volatile fatty acids and polyhexamethylene guanidine stress during sludge fermentation: metagenomic insights of microbial metabolic traits and adaptation[J]. Chinese Chemical Letters, 2023, 34(6): 107890. |
| [28] | Rozen R, Vockley J, Zhou L B, et al. Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family[J]. Genomics, 1994, 24(2): 280-287. |
| [29] | Manow R, Wang C, Garza E, et al. Expression of acetaldehyde dehydrogenase (aldB) improved ethanol production from xylose by the ethanologenic Escherichia coli RM10[J]. World Journal of Microbiology & Biotechnology, 2020, 36(4): 59. |
| [30] | Zhou S F, Ainala S K, Seol E, et al. Inducible gene expression system by 3-hydroxypropionic acid[J]. Biotechnology for Biofuels, 2015, 8: 169. |
| [31] | Harris D J, Assink R A, Celina M. NMR analysis of oxidatively aged HTPB/IPDI polyurethane rubber: degradation products, dynamics, and heterogeneity[J]. Macromolecules, 2001, 34(19): 6695-6700. |
| [32] | 康莹, 陈智群, 陈曼, 等. 复合固体推进剂长贮中HTPB胶微结构损伤研究[J]. 固体火箭技术, 2015, 38(4): 519-522, 527. |
| Kang Y, Chen Z Q, Chen M, et al. Microstructure damage of HTPB glue in the long-time storage of composite solid propellants[J]. Journal of Solid Rocket Technology, 2015, 38(4): 519-522, 527. | |
| [33] | Lv G Z, Cen L, Tan X W, et al. Preparation of epoxidized acrylonitrile butadiene rubber and its compatibilization effect on water-swellable rubber composites[J]. Journal of Applied Polymer Science, 2019, 136(26): 47694. |
| [34] | Huerta Lwanga E, Thapa B, Yang X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: a potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753-757. |
| [35] | Cheng X T, Xia M L, Yang Y. Biodegradation of vulcanized rubber by a gut bacterium from plastic-eating mealworms[J]. Journal of Hazardous Materials, 2023, 448: 130940. |
| [1] | 叶鑫煌, 薛嘉豪, 赵玉来. 可聚型Gemini表面活性剂的制备、表征及其稳定高内相乳液的研究[J]. 化工学报, 2025, 76(8): 4331-4340. |
| [2] | 赵美, 甘雨欣, 赵绍磊, 杨令, 王亭杰. 硅橡胶用纳米二氧化硅表面有机修饰及补强机理研究进展[J]. 化工学报, 2025, 76(7): 3125-3136. |
| [3] | 乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695. |
| [4] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [5] | 郭乃胜, 朱小波, 王双, 陈平, 褚召阳, 王志臣. 聚氨酯改性沥青高低温性能及影响因素的研究进展[J]. 化工学报, 2025, 76(6): 2505-2523. |
| [6] | 高冰冰, 许诺, 白云翔, 张春芳, 杨永强, 董亮亮. 氦气分离聚合物膜[J]. 化工学报, 2025, 76(5): 2119-2135. |
| [7] | 陆艳秋, 狄扬, 石文博, 殷聪聪, 汪勇. 基于新型有机多孔聚合物的智能响应膜研究进展[J]. 化工学报, 2025, 76(5): 2101-2118. |
| [8] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [9] | 李新颖, 苏畅, 郭超, 庞建, 王超, 李春. CRISPR技术在链霉菌细胞工厂中的应用和优化[J]. 化工学报, 2025, 76(3): 922-932. |
| [10] | 郭琛龙, 彭正奇, 姜冰雪, 吴正凯, 王德良, 王青月, 郑杰元, Ho Lim Khak, 史胜斌, 杨轩, 刘平伟, 王文俊. 退役PET高值回用的研究进展[J]. 化工学报, 2025, 76(2): 532-542. |
| [11] | 陈弋翀, 贾星雨, 钟文宇, 施俞晖, 彭瑶, 孙嘉阳, 胡冬冬, 赵玲. 具有梯度结构的微孔热塑性聚氨酯及其性能[J]. 化工学报, 2025, 76(2): 897-908. |
| [12] | 宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896. |
| [13] | 翟紫航, 蒋杰, 李锦锦, 赵玲, 奚桢浩. 基于2,5-呋喃二甲酸的三元无规共聚酯PBSF的制备与性能[J]. 化工学报, 2025, 76(2): 868-878. |
| [14] | 应昕, 杜淼, 潘鹏举, 单国荣. 高折射率聚硫氨酯的合成、结构与性能[J]. 化工学报, 2025, 76(2): 858-867. |
| [15] | 贾艳萍, 马艳菊, 管文昕, 杨彬, 张健, 张兰河. 响应面法优化Fe0/H2O2体系降解染料废水的工艺条件及机理[J]. 化工学报, 2025, 76(1): 348-362. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号