| 1 |
Dehghan A A, Dehghani A R. Experimental and theoretical investigation of thermal performance of underground cold-water reservoirs[J]. International Journal of Thermal Sciences, 2011, 50(5): 816-824.
|
| 2 |
El Omari K, Dumas J P. Crystallization of supercooled spherical nodules in a flow[J]. International Journal of Thermal Sciences, 2004, 43(12): 1171-1180.
|
| 3 |
Yang L Z, Villalobos U, Akhmetov B, et al. A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: state of the art and recent developments[J]. Applied Energy, 2021, 288: 116555.
|
| 4 |
Altuntas M, Erdemir D. An investigation on potential use of ice thermal energy storage system as energy source for heat pumps[J]. Journal of Energy Storage, 2022, 55: 105588.
|
| 5 |
Liu Z D, Chen H. A numerical simulation and analysis of the discharge characteristics and heat transfer performance during the ice-storage system[J]. Journal of Energy Storage, 2023, 68: 107623.
|
| 6 |
Chen T, Wan A P, Zuo Q, et al. Performance improvement of combined cycle power plant with combined ice slurry thermal energy storage cooling and adsorption cooling[J]. Journal of Energy Storage, 2023, 61: 106779.
|
| 7 |
Zhang J, Zhu X W, Mondejar M E, et al. A review of heat transfer enhancement techniques in plate heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 305-328.
|
| 8 |
Amalfi R L, Vakili-Farahani F, Thome J R. Flow boiling and frictional pressure gradients in plate heat exchangers(part 1): Review and experimental database[J]. International Journal of Refrigeration, 2016, 61: 166-184.
|
| 9 |
Amalfi R L, Vakili-Farahani F, Thome J R. Flow boiling and frictional pressure gradients in plate heat exchangers(part 2): Comparison of literature methods to database and new prediction methods[J]. International Journal of Refrigeration, 2016, 61: 185-203.
|
| 10 |
Martin H. A theoretical approach to predict the performance of chevron-type plate heat exchangers[J]. Chemical Engineering and Processing: Process Intensification, 1996, 35(4): 301-310.
|
| 11 |
Wang H, Feng R Z, Duan H L, et al. Investigation into the ice generator with double supercooled heat exchangers[J]. Applied Thermal Engineering, 2016, 98: 380-386.
|
| 12 |
Muley A, Manglik R M. Enhanced heat transfer characteristics of single-phase flows in a plate heat exchanger with mixed chevron plates[J]. Journal of Enhanced Heat Transfer, 1997, 4(3): 187-201.
|
| 13 |
Muley A, Manglik R M, Metwally H M. Enhanced heat transfer characteristics of viscous liquid flows in a chevron plate heat exchanger[J]. Journal of Heat Transfer, 1999, 121(4): 1011-1017.
|
| 14 |
Khan T S, Khan M S, Chyu M C, et al. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations[J]. Applied Thermal Engineering, 2010, 30(8/9): 1058-1065.
|
| 15 |
Ali M M, Ramadhyani S. Experiments on convective heat transfer in corrugated channels[J]. Experimental Heat Transfer, 1992, 5(3): 175-193.
|
| 16 |
Hwang S D, Jang I H, Cho H H. Experimental study on flow and local heat/mass transfer characteristics inside corrugated duct[J]. International Journal of Heat and Fluid Flow, 2006, 27(1): 21-32.
|
| 17 |
Ciofalo M, Di Piazza I, Stasiek J A. Investigation of flow and heat transfer in corrugated-undulated plate heat exchangers[J]. Heat and Mass Transfer, 2000, 36(5): 449-462.
|
| 18 |
Bahaidarah H M S, Anand N K, Chen H C. Numerical study of heat and momentum transfer in channels with wavy walls[J]. Numerical Heat Transfer, Part A: Applications, 2005, 47(5): 417-439.
|
| 19 |
Wang G, Vanka S P. Convective heat transfer in periodic wavy passages[J]. International Journal of Heat and Mass Transfer, 1995, 38(17): 3219-3230.
|
| 20 |
Kim M, Baik Y J, Park S R, et al. Experimental study on corrugated cross-flow air-cooled plate heat exchangers[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1265-1272.
|
| 21 |
Zhang L, Che D F. Influence of corrugation profile on the thermalhydraulic performance of cross-corrugated plates[J]. Numerical Heat Transfer Part A - Applications, 2011, 59(4): 267-296.
|
| 22 |
Lam C K G, Bremhorst K. A modified form of the k-ε model for predicting wall turbulence[J]. Journal of Fluids Engineering, 1981, 103(3): 456-460.
|
| 23 |
Focke W W, Zachariades J, Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1479.
|
| 24 |
Faizal M, Ahmed M R. Experimental studies on a corrugated plate heat exchanger for small temperature difference applications[J]. Experimental Thermal and Fluid Science, 2012, 36: 242-248.
|
| 25 |
Sparrow E M, Comb J W. Effect of interwall spacing and fluid flow inlet conditions on a corrugated-wall heat exchanger[J]. International Journal of Heat and Mass Transfer, 1983, 26(7): 993-1005.
|
| 26 |
Elshafei E A M, Awad M M, El-Negiry E, et al. Heat transfer and pressure drop in corrugated channels[J]. Energy, 2010, 35(1): 101-110.
|
| 27 |
Lyytikäinen M, Hämäläinen T, Hämäläinen J. A fast modelling tool for plate heat exchangers based on depth-averaged equations[J]. International Journal of Heat and Mass Transfer, 2009, 52(5/6): 1132-1137.
|
| 28 |
李明春, 骆仲泱, 肖刚, 等. 人字形波纹板传热与阻力特性的数值模拟和试验研究[J]. 能源工程, 2016, 36(2): 8-14.
|
|
Li M C, Luo Z Y, Xiao G, et al. Numerical simulation and experimental study on heat transfer and resistance characteristics of chevron corrugated plate[J]. Energy Engineering, 2016, 36(2): 8-14.
|
| 29 |
Focke W W, Knibbe P G. Flow visualization in parallel-plate ducts with corrugated walls[J]. Journal of Fluid Mechanics, 1986, 165: 73.
|
| 30 |
Sarraf K, Launay S, Tadrist L. Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers[J]. International Journal of Thermal Sciences, 2015, 94: 126-138.
|